DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polarization of massive fermions in a vortical fluid

Abstract

For this study, fermions become polarized in a vortical fluid due to spin-vorticity coupling. Such a polarization can be calculated from the Wigner function in a quantum kinetic approach. By extending previous results for chiral fermions, we derive the Wigner function for massive fermions up to next-to-leading order in spatial gradient expansion. The polarization density of fermions can be calculated from the axial vector component of the Wigner function and is found to be proportional to the local vorticity ω. The polarizations per particle for fermions and antifermions decrease with the chemical potential and increase with energy (mass). Both quantities approach the asymptotic value ℏω/4 in the large energy (mass) limit. The polarization per particle for fermions is always smaller than that for antifermions, whose ratio of fermions to antifermions also decreases with the chemical potential. The polarization per particle on the Cooper-Frye freeze-out hypersurface can also be formulated and is consistent with the previous result of Becattini et al.

Authors:
 [1];  [2];  [1];  [3]
  1. Univ. of Science and Technology of China, Hefei (China). Interdisciplinary Center for Theoretical Study and Dept. of Modern Physics
  2. Frankfurt Inst. for Advanced Studies (FIAS), Frankfurt (Germany)
  3. China Central Normal Univ., Wuhan (China). Inst. of Particle Physics and Key Lab. of Quark and Lepton Physics (MOE); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Division
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Nuclear Physics (NP); National Basic Research Program of China; National Natural Science Foundation of China (NSFC); Ministry of Science and Technology (China); Helmholtz Association of German Research Centres; Society for Heavy Ion Research (GSI)
OSTI Identifier:
1429354
Alternate Identifier(s):
OSTI ID: 1280207
Grant/Contract Number:  
AC02-05CH11231; 2015CB856902; 2014CB845406; 11535012; 11221504; 2014DFG02050
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review C
Additional Journal Information:
Journal Volume: 94; Journal Issue: 2; Related Information: © 2016 American Physical Society.; Journal ID: ISSN 2469-9985
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; 74 ATOMIC AND MOLECULAR PHYSICS; collective flow; relativistic heavy-ion collisions

Citation Formats

Fang, Ren-hong, Pang, Long-gang, Wang, Qun, and Wang, Xin-nian. Polarization of massive fermions in a vortical fluid. United States: N. p., 2016. Web. doi:10.1103/PhysRevC.94.024904.
Fang, Ren-hong, Pang, Long-gang, Wang, Qun, & Wang, Xin-nian. Polarization of massive fermions in a vortical fluid. United States. https://doi.org/10.1103/PhysRevC.94.024904
Fang, Ren-hong, Pang, Long-gang, Wang, Qun, and Wang, Xin-nian. Tue . "Polarization of massive fermions in a vortical fluid". United States. https://doi.org/10.1103/PhysRevC.94.024904. https://www.osti.gov/servlets/purl/1429354.
@article{osti_1429354,
title = {Polarization of massive fermions in a vortical fluid},
author = {Fang, Ren-hong and Pang, Long-gang and Wang, Qun and Wang, Xin-nian},
abstractNote = {For this study, fermions become polarized in a vortical fluid due to spin-vorticity coupling. Such a polarization can be calculated from the Wigner function in a quantum kinetic approach. By extending previous results for chiral fermions, we derive the Wigner function for massive fermions up to next-to-leading order in spatial gradient expansion. The polarization density of fermions can be calculated from the axial vector component of the Wigner function and is found to be proportional to the local vorticity ω. The polarizations per particle for fermions and antifermions decrease with the chemical potential and increase with energy (mass). Both quantities approach the asymptotic value ℏω/4 in the large energy (mass) limit. The polarization per particle for fermions is always smaller than that for antifermions, whose ratio of fermions to antifermions also decreases with the chemical potential. The polarization per particle on the Cooper-Frye freeze-out hypersurface can also be formulated and is consistent with the previous result of Becattini et al.},
doi = {10.1103/PhysRevC.94.024904},
journal = {Physical Review C},
number = 2,
volume = 94,
place = {United States},
year = {Tue Aug 02 00:00:00 EDT 2016},
month = {Tue Aug 02 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 123 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Global quark polarization in noncentral A + A collisions
journal, April 2008


Testing the Chiral Magnetic and Chiral Vortical Effects in Heavy Ion Collisions
journal, February 2011


Polarization probes of vorticity in heavy ion collisions
journal, October 2007


Transport equations for the QCD quark Wigner operator
journal, October 1986


Fluid dynamical prediction of changed v 1 flow at energies available at the CERN Large Hadron Collider
journal, August 2011


Relativistic Quantum Transport Theory for Electrodynamics
journal, February 1996


Λ polarization in peripheral heavy ion collisions
journal, September 2013


Consistent description of kinetic equation with triangle anomaly
journal, May 2011


Relativistic distribution function for particles with spin at local thermodynamical equilibrium
journal, November 2013


The effects of topological charge change in heavy ion collisions: “Event by event and violation”
journal, May 2008


Spin alignment of vector mesons in non-central <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>A</mml:mi><mml:mo>+</mml:mo><mml:mi>A</mml:mi></mml:math> collisions
journal, November 2005


Globally Polarized Quark-Gluon Plasma in Noncentral A + A Collisions
journal, March 2005


Global polarization measurement in Au+Au collisions
journal, August 2007


Erratum: Globally Polarized Quark-Gluon Plasma in Noncentral A + A Collisions [Phys. Rev. Lett. 94 , 102301 (2005)]
journal, January 2006


Chiral Anomaly and Local Polarization Effect from the Quantum Kinetic Approach
journal, December 2012


Wigner Functions in Covariant and Single-Time Formulations
journal, July 1998


Quantum transport theory for abelian plasmas
journal, February 1987


Berry Curvature and Four-Dimensional Monopoles in the Relativistic Chiral Kinetic Equation
journal, June 2013


Viscous potential flow analysis of peripheral heavy ion collisions
journal, February 2013


Hydrodynamics with Triangle Anomalies
journal, November 2009


Quark polarization in a viscous quark-gluon plasma
journal, November 2011


Vorticity in heavy-ion collisions
journal, June 2016


Chiral magnetic effect
journal, October 2008


Angular momentum conservation in heavy ion collisions at very high energy
journal, February 2008


Relativistic distribution function for particles with spin at local thermodynamical equilibrium
journal, May 2014


Global polarization measurement in Au+Au collisions
text, January 2007


Global quark polarization in non-central $A+A$ collisions
text, January 2007


The effects of topological charge change in heavy ion collisions: "Event by event P and CP violation"
text, January 2007


Angular momentum conservation in heavy ion collisions at very high energy
text, January 2007


Quark Polarization in a Viscous Quark-Gluon Plasma
text, January 2011


Chiral anomaly and local polarization effect from quantum kinetic approach
text, January 2012


Vorticity in Heavy-Ion Collisions
text, January 2016


Globally Polarized Quark-gluon Plasma in Non-central A+A Collisions
text, January 2004


Spin Alignment of Vector Mesons in Non-central A+A Collisions
text, January 2004


Works referencing / citing this record:

Vorticity and particle polarization in heavy ion collisions (experimental perspective)
journal, January 2018


Microscopic description for polarization in particle scattering
journal, December 2019


Λ hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach
journal, August 2017


Global Λ polarization in heavy-ion collisions from a transport model
journal, November 2017


Thermal vorticity and spin polarization in heavy-ion collisions
journal, January 2019


Kinetic theory for massive spin 1 / 2 particles from the Wigner-function formalism
journal, September 2019


Pseudoscalar condensation induced by chiral anomaly and vorticity for massive fermions
journal, January 2017


Local spin polarization in high energy heavy ion collisions
journal, October 2019


Wigner functions for fermions in strong magnetic fields
journal, February 2018


Study of $$\Lambda $$ Λ polarization in relativistic nuclear collisions at $$\sqrt{s_\mathrm {NN}}=7.7$$ s NN = 7.7 –200 GeV
journal, April 2017


Thermal vorticity and spin polarization in heavy-ion collisions
text, January 2018


The chiral vortical effect in Wigner function approach
text, January 2018


Axial Kinetic Theory and Spin Transport for Fermions with Arbitrary Mass
text, January 2019


A microscopic description for polarization in particle scatterings
text, January 2019


Feed-down effect on $Λ$ spin polarization
text, January 2019


Local spin polarization in high energy heavy ion collisions
text, January 2019


Chiral susceptibility in Nambu Jona Lasinio model: a Wigner function approach
text, January 2019