DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ Transmission Electron Microscopy Study of Electrochemical Lithiation and Delithiation Cycling of the Conversion Anode RuO 2

Abstract

Conversion-type electrodes represent a broad class of materials with a new Li+ reactivity concept. Of these materials, RuO2 can be considered a model material due to its metallic-like conductivity and its high theoretical capacity of 806 mAh/g. In this study, we use in situ transmission electron microscopy to study the reaction between single-crystal RuO2 nanowires and Li+. We show that a large volume expansion of 95% occurs after lithiation, 26% of which is irreversible after delithiation. Significant surface roughening and lithium embrittlement are also present. Furthermore, we show that the initial reaction from crystalline RuO2 to the fully lithiated mixed phase of Ru/Li2O is not fully reversible, passing through an intermediate phase of LixRuO2. In subsequent cycles, the phase transitions are between amorphous RuO2 in the delithiated state and a nanostructured network of Ru/Li2O in the fully lithiated phase.

Authors:
 [1];  [2];  [2];  [1]
  1. Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering and Inst. for Systems Research
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES); L3 Technologies, New York City, NY (United States)
OSTI Identifier:
1426912
Report Number(s):
SAND2013-4391J
Journal ID: ISSN 1936-0851; 519480
Grant/Contract Number:  
AC04-94AL85000; SC0001160
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 7; Journal Issue: 7; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; conversion electrode; energy storage; in situ transmission electron microscopy; ruthenium dioxide

Citation Formats

Gregorczyk, Keith E., Liu, Yang, Sullivan, John P., and Rubloff, Gary W. In Situ Transmission Electron Microscopy Study of Electrochemical Lithiation and Delithiation Cycling of the Conversion Anode RuO 2. United States: N. p., 2013. Web. doi:10.1021/nn402451s.
Gregorczyk, Keith E., Liu, Yang, Sullivan, John P., & Rubloff, Gary W. In Situ Transmission Electron Microscopy Study of Electrochemical Lithiation and Delithiation Cycling of the Conversion Anode RuO 2. United States. https://doi.org/10.1021/nn402451s
Gregorczyk, Keith E., Liu, Yang, Sullivan, John P., and Rubloff, Gary W. Thu . "In Situ Transmission Electron Microscopy Study of Electrochemical Lithiation and Delithiation Cycling of the Conversion Anode RuO 2". United States. https://doi.org/10.1021/nn402451s. https://www.osti.gov/servlets/purl/1426912.
@article{osti_1426912,
title = {In Situ Transmission Electron Microscopy Study of Electrochemical Lithiation and Delithiation Cycling of the Conversion Anode RuO 2},
author = {Gregorczyk, Keith E. and Liu, Yang and Sullivan, John P. and Rubloff, Gary W.},
abstractNote = {Conversion-type electrodes represent a broad class of materials with a new Li+ reactivity concept. Of these materials, RuO2 can be considered a model material due to its metallic-like conductivity and its high theoretical capacity of 806 mAh/g. In this study, we use in situ transmission electron microscopy to study the reaction between single-crystal RuO2 nanowires and Li+. We show that a large volume expansion of 95% occurs after lithiation, 26% of which is irreversible after delithiation. Significant surface roughening and lithium embrittlement are also present. Furthermore, we show that the initial reaction from crystalline RuO2 to the fully lithiated mixed phase of Ru/Li2O is not fully reversible, passing through an intermediate phase of LixRuO2. In subsequent cycles, the phase transitions are between amorphous RuO2 in the delithiated state and a nanostructured network of Ru/Li2O in the fully lithiated phase.},
doi = {10.1021/nn402451s},
journal = {ACS Nano},
number = 7,
volume = 7,
place = {United States},
year = {Thu Jun 20 00:00:00 EDT 2013},
month = {Thu Jun 20 00:00:00 EDT 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 65 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures
journal, May 2012

  • Liu, Xiao Hua; Liu, Yang; Kushima, Akihiro
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200024

In situ TEM electrochemistry of anode materials in lithium ion batteries
journal, January 2011

  • Liu, Xiao Hua; Huang, Jian Yu
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01918j

In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
journal, December 2010


Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO2 nanowires
journal, November 2012


Controlling the Lithiation-Induced Strain and Charging Rate in Nanowire Electrodes by Coating
journal, May 2011

  • Zhang, Li Qiang; Liu, Xiao Hua; Liu, Yang
  • ACS Nano, Vol. 5, Issue 6
  • DOI: 10.1021/nn200770p

In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
journal, May 2012

  • Liu, Nian; Wu, Hui; McDowell, Matthew T.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl3014814

Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes
journal, February 2012

  • Karki, Khim; Epstein, Eric; Cho, Jeong-Hyun
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl204063u

Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy
journal, September 2012

  • McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo
  • Advanced Materials, Vol. 24, Issue 45
  • DOI: 10.1002/adma.201202744

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

Reversible Nanopore Formation in Ge Nanowires during Lithiation–Delithiation Cycling: An In Situ Transmission Electron Microscopy Study
journal, September 2011

  • Liu, Xiao Hua; Huang, Shan; Picraux, S. Tom
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl2024118

Lithiation-Induced Embrittlement of Multiwalled Carbon Nanotubes
journal, August 2011

  • Liu, Yang; Zheng, He; Liu, Xiao Hua
  • ACS Nano, Vol. 5, Issue 9
  • DOI: 10.1021/nn202071y

Leapfrog Cracking and Nanoamorphization of ZnO Nanowires during In Situ Electrochemical Lithiation
journal, November 2011

  • Kushima, Akihiro; Liu, Xiao Hua; Zhu, Guang
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl201376j

Interfacial Mechanics of Carbon Nanotube@Amorphous-Si Coaxial Nanostructures
journal, August 2011


Sandwich-Lithiation and Longitudinal Crack in Amorphous Silicon Coated on Carbon Nanofibers
journal, September 2012

  • Wang, Jiang Wei; Liu, Xiao Hua; Zhao, Kejie
  • ACS Nano, Vol. 6, Issue 10
  • DOI: 10.1021/nn3034343

In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix
journal, August 2012


Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries
journal, December 2011

  • Ruzmetov, Dmitry; Oleshko, Vladimir P.; Haney, Paul M.
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl204047z

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

Revealing the conversion mechanism of CuO nanowires during lithiation–delithiation by in situ transmission electron microscopy
journal, January 2012

  • Wang, Xi; Tang, Dai-Ming; Li, Huiqiao
  • Chemical Communications, Vol. 48, Issue 40
  • DOI: 10.1039/c2cc30643c

Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012

  • Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2185

Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity
journal, August 2003


Enhanced Potential of Amorphous Electrode Materials: Case Study of RuO2
journal, February 2008


Nano-ionics in the context of lithium batteries
journal, September 2006


On the chemical potential of a component in a metastable phase—application to Li-storage in the RuO2–Li system
journal, January 2009

  • Delmer, O.; Maier, J.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 30
  • DOI: 10.1039/b822961a

Evidence for Interfacial-Storage Anomaly in Nanocomposites for Lithium Batteries from First-Principles Simulations
journal, February 2006


Growth of single-crystalline RuO2 nanowires with one- and two-nanocontact electrical characterizations
journal, January 2007

  • Liu, Yee-Lang; Wu, Zong-Yi; Lin, Kuei-Jiun
  • Applied Physics Letters, Vol. 90, Issue 1
  • DOI: 10.1063/1.2428669

Synthesis and characterization of ruthenium dioxide nanostructures
journal, March 2011


The electron-energy-loss spectrum of lithium metal
journal, June 1986


Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
journal, January 2011

  • Wang, Feng; Graetz, Jason; Moreno, M. Sergio
  • ACS Nano, Vol. 5, Issue 2
  • DOI: 10.1021/nn1028168

Energy loss spectroscopy of RuO2 thin films
journal, August 1997

  • Mondio, G.; Neri, F.; Allegrini, M.
  • Journal of Applied Physics, Vol. 82, Issue 4
  • DOI: 10.1063/1.365974

Growth direction determination of a single RuO2 nanowire by polarized Raman spectroscopy
journal, May 2010

  • Kim, Myung Hwa; Baik, Jeong Min; Lee, Seung Joon
  • Applied Physics Letters, Vol. 96, Issue 21
  • DOI: 10.1063/1.3435475

Works referencing / citing this record:

In Situ Investigations of Li-MoS 2 with Planar Batteries
journal, November 2014


Probing the Electrochemical Reaction Mechanism and Crystallinity Effect of RuO 2 for Sodium Storage
journal, January 2018

  • Lu, Fan; Liu, Shengzhou; Zeng, Guifan
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0201811jes

Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research
journal, May 2019

  • Liu, Dongqing; Shadike, Zulipiya; Lin, Ruoqian
  • Advanced Materials, Vol. 31, Issue 28
  • DOI: 10.1002/adma.201806620

Thermoelectrochemical Activation of CoO in Na Cells
journal, January 2018

  • Yu, H.; Brown, Z. L.; Wei, C.
  • Journal of The Electrochemical Society, Vol. 165, Issue 9
  • DOI: 10.1149/2.0111809jes

X‐ray Nano‐computed Tomography of Electrochemical Conversion in Lithium‐ion Battery
journal, July 2019

  • Di Lecce, Daniele; Levchenko, Stanislav; Iacoviello, Francesco
  • ChemSusChem, Vol. 12, Issue 15
  • DOI: 10.1002/cssc.201901123

Phase evolution for conversion reaction electrodes in lithium-ion batteries
journal, February 2014

  • Lin, Feng; Nordlund, Dennis; Weng, Tsu-Chien
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4358

A critical review-promises and barriers of conversion electrodes for Li-ion batteries
journal, April 2017

  • Kraytsberg, Alexander; Ein-Eli, Yair
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 7
  • DOI: 10.1007/s10008-017-3580-9

Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy
journal, August 2017

  • Yuan, Yifei; Amine, Khalil; Lu, Jun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15806

In Situ Transmission Electron Microscopy Studies of Electrochemical Reaction Mechanisms in Rechargeable Batteries
journal, June 2019


High Reversible Lithium Storage Capacity and Structural Changes of Fe 2 O 3 Nanoparticles Confined inside Carbon Nanotubes
journal, December 2015

  • Yu, Wan-Jing; Zhang, Lili; Hou, Peng-Xiang
  • Advanced Energy Materials, Vol. 6, Issue 3
  • DOI: 10.1002/aenm.201501755

Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes
journal, December 2015


Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries
journal, November 2019

  • Fang, Shan; Bresser, Dominic; Passerini, Stefano
  • Advanced Energy Materials, Vol. 10, Issue 1
  • DOI: 10.1002/aenm.201902485

Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes
journal, January 2016

  • Bresser, Dominic; Passerini, Stefano; Scrosati, Bruno
  • Energy & Environmental Science, Vol. 9, Issue 11
  • DOI: 10.1039/c6ee02346k

Dramatically enhanced reversibility of Li 2 O in SnO 2 -based electrodes: the effect of nanostructure on high initial reversible capacity
journal, January 2016

  • Hu, Renzong; Chen, Dongchang; Waller, Gordon
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/c5ee03367e

Potential of Si14Ge14 and B14P14 nanocages as electrodes of metal-ion batteries: a theoretical investigation
journal, January 2019


Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca
journal, April 2016

  • He, Yang; Gu, Meng; Xiao, Haiyan
  • Angewandte Chemie International Edition, Vol. 55, Issue 21
  • DOI: 10.1002/anie.201601542

Thin Film RuO 2 Lithiation: Fast Lithium-Ion Diffusion along the Interface
journal, November 2018

  • Kim, Sungkyu; Evmenenko, Guennadi; Xu, Yaobin
  • Advanced Functional Materials, Vol. 28, Issue 52
  • DOI: 10.1002/adfm.201805723

Atomic-Scale Monitoring of Electrode Materials in Lithium-Ion Batteries using In Situ Transmission Electron Microscopy
journal, October 2017

  • Shang, Tongtong; Wen, Yuren; Xiao, Dongdong
  • Advanced Energy Materials, Vol. 7, Issue 23
  • DOI: 10.1002/aenm.201700709

Recent progress in conversion reaction metal oxide anodes for Li-ion batteries
journal, January 2017

  • Cao, Kangzhe; Jin, Ting; Yang, Li
  • Materials Chemistry Frontiers, Vol. 1, Issue 11
  • DOI: 10.1039/c7qm00175d

Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes
text, January 2016


Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries
text, January 2020


Effects of HF on the Lithiation Behavior of the Silicon Anode in LiPF6 Organic Electrolyte Solution
journal, January 2020