skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation

Abstract

Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here in this paper, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2. The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.

Authors:
 [1];  [2];  [3];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [4]
  1. KTH Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemistry
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  4. KTH Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemistry; Dalian Univ. of Technology, Dalian (China). State Key Lab. of Fine Chemicals, Inst. of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Natural Science Foundation of China (NNSF); Swedish Energy Agency; Knut & Alice Wallenberg Foundation; Swedish Research Council (SRC)
OSTI Identifier:
1426183
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Electrocatalysis; Electronic devices; Energy; Heterogeneous catalysis

Citation Formats

Zhang, Peili, Li, Lin, Nordlund, Dennis, Chen, Hong, Fan, Lizhou, Zhang, Biaobiao, Sheng, Xia, Daniel, Quentin, and Sun, Licheng. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. United States: N. p., 2018. Web. doi:10.1038/s41467-017-02429-9.
Zhang, Peili, Li, Lin, Nordlund, Dennis, Chen, Hong, Fan, Lizhou, Zhang, Biaobiao, Sheng, Xia, Daniel, Quentin, & Sun, Licheng. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. United States. doi:10.1038/s41467-017-02429-9.
Zhang, Peili, Li, Lin, Nordlund, Dennis, Chen, Hong, Fan, Lizhou, Zhang, Biaobiao, Sheng, Xia, Daniel, Quentin, and Sun, Licheng. Fri . "Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation". United States. doi:10.1038/s41467-017-02429-9. https://www.osti.gov/servlets/purl/1426183.
@article{osti_1426183,
title = {Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation},
author = {Zhang, Peili and Li, Lin and Nordlund, Dennis and Chen, Hong and Fan, Lizhou and Zhang, Biaobiao and Sheng, Xia and Daniel, Quentin and Sun, Licheng},
abstractNote = {Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here in this paper, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm-2. The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.},
doi = {10.1038/s41467-017-02429-9},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

On tuning the morphology of nanoporous gold
journal, February 2011


Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis
journal, January 2013


A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts
journal, November 2014


Evolution of nanoporosity in dealloying
journal, March 2001

  • Erlebacher, Jonah; Aziz, Michael J.; Karma, Alain
  • Nature, Vol. 410, Issue 6827, p. 450-453
  • DOI: 10.1038/35068529

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction
journal, June 2014

  • Long, Xia; Li, Jinkai; Xiao, Shuang
  • Angewandte Chemie International Edition, Vol. 53, Issue 29
  • DOI: 10.1002/anie.201402822

An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen
journal, August 2013

  • Louie, Mary W.; Bell, Alexis T.
  • Journal of the American Chemical Society, Vol. 135, Issue 33
  • DOI: 10.1021/ja405351s

The mechanism of oxidation of copper in alkaline solutions
journal, March 1984

  • De Chialvo, M. R. Gennero; Marchiano, S. L.; Arvía, A. J.
  • Journal of Applied Electrochemistry, Vol. 14, Issue 2
  • DOI: 10.1007/BF00618735

Structural comparison of nickel electrodes and precursor phases
journal, February 1990


Water oxidation catalysts based on abundant 1st row transition metals
journal, September 2013


Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions
journal, January 2015

  • Li, Zhenhua; Shao, Mingfei; An, Hongli
  • Chemical Science, Vol. 6, Issue 11
  • DOI: 10.1039/C5SC02417J

In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation
journal, July 2015


A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal
journal, January 2014

  • Gerken, James B.; Shaner, Sarah E.; Massé, Robert C.
  • Energy Environ. Sci., Vol. 7, Issue 7
  • DOI: 10.1039/C4EE00436A

Electrodeposition and characterization of Ni–Cu alloys
journal, February 2014


In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions
journal, January 2016

  • Liu, Xiang; Cui, Shengsheng; Qian, Manman
  • Chemical Communications, Vol. 52, Issue 32
  • DOI: 10.1039/C6CC00526H

Copper oxidation state in chalcopyrite: Mixed Cu d9 and d10 characteristics
journal, September 2006

  • Pearce, C. I.; Pattrick, R. A. D.; Vaughan, D. J.
  • Geochimica et Cosmochimica Acta, Vol. 70, Issue 18
  • DOI: 10.1016/j.gca.2006.05.017

Efficient Water Splitting Catalyzed by Cobalt Phosphide-Based Nanoneedle Arrays Supported on Carbon Cloth
journal, January 2016


An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation
journal, May 2013

  • Gong, Ming; Li, Yanguang; Wang, Hailiang
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja4027715

Homogeneously dispersed multimetal oxygen-evolving catalysts
journal, March 2016


A NEXAFS investigation of the formation and decomposition of CuO and Cu2O thin films on Cu(100)
journal, November 1999


Oxygen Evolution on La[sub 1−x]Sr[sub x]CoO[sub 3] Electrodes in Alkaline Solutions
journal, January 1980

  • Matsumoto, Y.
  • Journal of The Electrochemical Society, Vol. 127, Issue 4
  • DOI: 10.1149/1.2129762

Highly Active Mixed-Metal Nanosheet Water Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids
journal, September 2014

  • Hunter, Bryan M.; Blakemore, James D.; Deimund, Mark
  • Journal of the American Chemical Society, Vol. 136, Issue 38
  • DOI: 10.1021/ja506087h

The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis
journal, June 2010


Preparation of dendritic NiFe films by electrodeposition for oxygen evolution
journal, January 2012

  • Kim, Kyung Ho; Zheng, Jin You; Shin, Woonsup
  • RSC Advances, Vol. 2, Issue 11
  • DOI: 10.1039/c2ra20241g

Fabrication of Nanoporous Nickel by Electrochemical Dealloying
journal, August 2004

  • Sun, Li; Chien, Chia-Ling; Searson, Peter C.
  • Chemistry of Materials, Vol. 16, Issue 16
  • DOI: 10.1021/cm0497881

Seamlessly Conductive 3D Nanoarchitecture of Core-Shell Ni-Co Nanowire Network for Highly Efficient Oxygen Evolution
journal, September 2016

  • Bae, Seok-Hu; Kim, Ji-Eun; Randriamahazaka, Hyacinthe
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601492

pH dependence of OER activity of oxides: Current and future perspectives
journal, March 2016


Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
journal, April 2014

  • Trotochaud, Lena; Young, Samantha L.; Ranney, James K.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja502379c

Comparison of Ni–Cu alloy films electrodeposited at low and high pH levels
journal, April 2008


Ni 2 P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni 2 P nanoparticles
journal, January 2015

  • Stern, Lucas-Alexandre; Feng, Ligang; Song, Fang
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE01155H

Mesoporous Ni 60 Fe 30 Mn 10 -alloy based metal/metal oxide composite thick films as highly active and robust oxygen evolution catalysts
journal, January 2016

  • Detsi, Eric; Cook, John B.; Lesel, Benjamin K.
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE02509E

Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-Edge X-ray Absorption Spectroscopy
journal, January 2016

  • Liu, Xiang; Cui, Shengsheng; Sun, Zijun
  • The Journal of Physical Chemistry C, Vol. 120, Issue 2
  • DOI: 10.1021/acs.jpcc.5b09818

Electrochemical corrosion of unalloyed copper in chloride media––a critical review
journal, January 2004


Water Oxidation at Electrodes Modified with Earth-Abundant Transition-Metal Catalysts
journal, October 2014


Enhanced Strain in Functional Nanoporous Gold with a Dual Microscopic Length Scale Structure
journal, April 2012

  • Detsi, Eric; Punzhin, Sergey; Rao, Jiancun
  • ACS Nano, Vol. 6, Issue 5
  • DOI: 10.1021/nn300179n

Oxygen 1 s x-ray-absorption edges of transition-metal oxides
journal, September 1989


Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
journal, January 2017

  • Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong
  • Nature Chemistry, Vol. 9, Issue 5
  • DOI: 10.1038/nchem.2695

An Investigation of the Anodic Behavior of Copper and Its Anodically Produced Oxides in Aqueous Solutions of High pH
journal, January 1990

  • Burke, L. D.
  • Journal of The Electrochemical Society, Vol. 137, Issue 2
  • DOI: 10.1149/1.2086496

Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction
journal, January 2014

  • Lu, Zhiyi; Xu, Wenwen; Zhu, Wei
  • Chem. Commun., Vol. 50, Issue 49
  • DOI: 10.1039/C4CC01625D

Ligand hole induced symmetry mixing of d8 states in LixNi1−xO, as observed in Ni 2p x-ray absorption spectroscopy
journal, October 1991


A Superlattice of Alternately Stacked Ni–Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water
journal, January 2015

  • Ma, Wei; Ma, Renzhi; Wang, Chengxiang
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn5069836

A nickel iron diselenide-derived efficient oxygen-evolution catalyst
journal, August 2016

  • Xu, Xiang; Song, Fang; Hu, Xile
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12324

Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation
journal, June 2016

  • Fan, Ke; Chen, Hong; Ji, Yongfei
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11981

In Situ Raman Study of Nickel Oxide and Gold-Supported Nickel Oxide Catalysts for the Electrochemical Evolution of Oxygen
journal, April 2012

  • Yeo, Boon Siang; Bell, Alexis T.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 15
  • DOI: 10.1021/jp3007415

    Works referencing / citing this record:

    Three dimensional carbon substrate materials for electrolysis of water
    journal, June 2018