skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Beyond a phenomenological description of magnetostriction

Abstract

Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here in this paper, we show how the source of magnetostriction—the underlying magnetoelastic stress—can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [5];  [6]; ORCiD logo [7];  [2];  [2]; ORCiD logo [8];  [2];  [9];  [9];  [4];  [10];  [10];  [2];  [10];  [10];  [11] more »;  [12];  [13];  [14];  [10];  [8];  [15]; ORCiD logo [16];  [17]; ORCiD logo [3];  [2];  [18] « less
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Accelerator Division
  3. Uppsala Univ. (Sweden). Dept. of Physics and Astronomy
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Applied Physics
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Centre National de la Recherche Scientifique (CNRS), Paris (France). Laboratoire de Chimie Physique -Matiere et Rayonnement; Sorbonne Univ., Paris (France)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Univ. of Amsterdam (Netherlands). Van der Waals-Zeeman Inst.
  7. Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics, Dept. of Condensed Matter Physics
  8. Brookhaven National Lab. (BNL), Upton, NY (United States)
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Physics
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  12. National Inst. for Materials Science (NIMS), Tsukuba (Japan). Magnetic Materials Unit
  13. HGST a Western Digital Company, San Jose, CA (United States). San Jose Research Center; Thomas J. Watson Research Center, Yorktown Heights, NY (United States)
  14. HGST a Western Digital Company, San Jose, CA (United States). San Jose Research Center; Technische Univ. Chemnitz (Germany). Inst. of Physics; Helmholtz-Zentrum Dresden–Rossendorf, Dresden (Germany). Inst. of Ion Beam Physics and Materials Research
  15. Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab), and Dept. of Physics
  16. Univ. of California, San Diego, CA (United States). Center for Memory and Recording Research
  17. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  18. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Uppsala Univ. (Sweden). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1426182
Alternate Identifier(s):
OSTI ID: 1430847
Report Number(s):
BNL-203367-2018-JAAM
Journal ID: ISSN 2041-1723; PII: 2730; TRN: US1802254
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; Magnetic properties and materials; Nanoparticles; Structure of solids and liquids

Citation Formats

Reid, A. H., Shen, X., Maldonado, P., Chase, T., Jal, E., Granitzka, P. W., Carva, K., Li, R. K., Li, J., Wu, L., Vecchione, T., Liu, T., Chen, Z., Higley, D. J., Hartmann, N., Coffee, R., Wu, J., Dakovski, G. L., Schlotter, W. F., Ohldag, H., Takahashi, Y. K., Mehta, V., Hellwig, O., Fry, A., Zhu, Y., Cao, J., Fullerton, E. E., Stöhr, J., Oppeneer, P. M., Wang, X. J., and Dürr, H. A. Beyond a phenomenological description of magnetostriction. United States: N. p., 2018. Web. doi:10.1038/s41467-017-02730-7.
Reid, A. H., Shen, X., Maldonado, P., Chase, T., Jal, E., Granitzka, P. W., Carva, K., Li, R. K., Li, J., Wu, L., Vecchione, T., Liu, T., Chen, Z., Higley, D. J., Hartmann, N., Coffee, R., Wu, J., Dakovski, G. L., Schlotter, W. F., Ohldag, H., Takahashi, Y. K., Mehta, V., Hellwig, O., Fry, A., Zhu, Y., Cao, J., Fullerton, E. E., Stöhr, J., Oppeneer, P. M., Wang, X. J., & Dürr, H. A. Beyond a phenomenological description of magnetostriction. United States. doi:10.1038/s41467-017-02730-7.
Reid, A. H., Shen, X., Maldonado, P., Chase, T., Jal, E., Granitzka, P. W., Carva, K., Li, R. K., Li, J., Wu, L., Vecchione, T., Liu, T., Chen, Z., Higley, D. J., Hartmann, N., Coffee, R., Wu, J., Dakovski, G. L., Schlotter, W. F., Ohldag, H., Takahashi, Y. K., Mehta, V., Hellwig, O., Fry, A., Zhu, Y., Cao, J., Fullerton, E. E., Stöhr, J., Oppeneer, P. M., Wang, X. J., and Dürr, H. A. Fri . "Beyond a phenomenological description of magnetostriction". United States. doi:10.1038/s41467-017-02730-7. https://www.osti.gov/servlets/purl/1426182.
@article{osti_1426182,
title = {Beyond a phenomenological description of magnetostriction},
author = {Reid, A. H. and Shen, X. and Maldonado, P. and Chase, T. and Jal, E. and Granitzka, P. W. and Carva, K. and Li, R. K. and Li, J. and Wu, L. and Vecchione, T. and Liu, T. and Chen, Z. and Higley, D. J. and Hartmann, N. and Coffee, R. and Wu, J. and Dakovski, G. L. and Schlotter, W. F. and Ohldag, H. and Takahashi, Y. K. and Mehta, V. and Hellwig, O. and Fry, A. and Zhu, Y. and Cao, J. and Fullerton, E. E. and Stöhr, J. and Oppeneer, P. M. and Wang, X. J. and Dürr, H. A.},
abstractNote = {Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here in this paper, we show how the source of magnetostriction—the underlying magnetoelastic stress—can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.},
doi = {10.1038/s41467-017-02730-7},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Theory of out-of-equilibrium ultrafast relaxation dynamics in metals
journal, November 2017


Electronic Grüneisen parameter and thermal expansion in ferromagnetic transition metal
journal, March 2008

  • Wang, Xuan; Nie, Shouhua; Li, Junjie
  • Applied Physics Letters, Vol. 92, Issue 12
  • DOI: 10.1063/1.2902170

Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo
journal, March 2013

  • Graves, C. E.; Reid, A. H.; Wang, T.
  • Nature Materials, Vol. 12, Issue 4
  • DOI: 10.1038/nmat3597

Magnetic and structural properties of (CoxFe100−x)50Pt50 alloy thin films
journal, May 2000

  • Kanazawa, H.; Lauhoff, G.; Suzuki, T.
  • Journal of Applied Physics, Vol. 87, Issue 9
  • DOI: 10.1063/1.372636

Ultrafast Spin Dynamics in Ferromagnetic Nickel
journal, May 1996


Temperature variation of the tetragonality in ordered PtFe alloy
journal, May 2004


The electronic thermodynamics of iron under Earth core conditions
journal, April 1986

  • Boness, David A.; Brown, J. Michael; McMahan, A. K.
  • Physics of the Earth and Planetary Interiors, Vol. 42, Issue 4
  • DOI: 10.1016/0031-9201(86)90025-7

Ultrafast demagnetization of L1 0 FePt and FePd ordered alloys
journal, December 2015


Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current
journal, January 2012

  • Rudolf, Dennis; La-O-Vorakiat, Chan; Battiato, Marco
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2029

First principles phonon calculations in materials science
journal, November 2015


Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films
journal, January 2016

  • Chase, T.; Trigo, M.; Reid, A. H.
  • Applied Physics Letters, Vol. 108, Issue 4
  • DOI: 10.1063/1.4940981

Visualization of nanocrystal breathing modes at extreme strains
journal, March 2015

  • Szilagyi, Erzsi; Wittenberg, Joshua S.; Miller, Timothy A.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7577

Explaining the paradoxical diversity of ultrafast laser-induced demagnetization
journal, December 2009

  • Koopmans, B.; Malinowski, G.; Dalla Longa, F.
  • Nature Materials, Vol. 9, Issue 3
  • DOI: 10.1038/nmat2593

4 f charge-density deformation and magnetostrictive bond strain observed in amorphous TbFe 2 by x-ray absorption spectroscopy
journal, January 2010


Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory
journal, July 2015

  • Weathersby, S. P.; Brown, G.; Centurion, M.
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4926994

Engineered materials for all-optical helicity-dependent magnetic switching
journal, February 2014

  • Mangin, S.; Gottwald, M.; Lambert, C-H.
  • Nature Materials, Vol. 13, Issue 3
  • DOI: 10.1038/nmat3864

L1 0 FePtX-Y media for heat-assisted magnetic recording : L1
journal, May 2013

  • Weller, Dieter; Mosendz, Oleksandr; Parker, Gregory
  • physica status solidi (a), Vol. 210, Issue 7
  • DOI: 10.1002/pssa.201329106

Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement
journal, March 2017


Ultrafast nonequilibrium stress generation in gold and silver
journal, April 1994


Femtosecond modification of electron localization and transfer of angular momentum in nickel
journal, August 2007

  • Stamm, C.; Kachel, T.; Pontius, N.
  • Nature Materials, Vol. 6, Issue 10
  • DOI: 10.1038/nmat1985

Distributions of phonon lifetimes in Brillouin zones
journal, March 2015


Spontaneous volume magnetostriction and non-Stoner behavior of the valence band in pure hcp Gd
journal, October 2004


Ultrafast Three-Dimensional Imaging of Lattice Dynamics in Individual Gold Nanocrystals
journal, May 2013


ABINIT: First-principles approach to material and nanosystem properties
journal, December 2009


Spatiotemporally separating electron and phonon thermal transport in L1 0 FePt films for heat assisted magnetic recording
journal, June 2014

  • Xu, D. B.; Sun, C. J.; Brewe, D. L.
  • Journal of Applied Physics, Vol. 115, Issue 24
  • DOI: 10.1063/1.4885428

Ultrafast demagnetization of FePt:Cu thin films and the role of magnetic heat capacity
journal, December 2014


Tailoring magnetocrystalline anisotropy of FePt by external strain
journal, April 2012

  • Lukashev, Pavel V.; Horrell, Nathan; Sabirianov, Renat F.
  • Journal of Applied Physics, Vol. 111, Issue 7
  • DOI: 10.1063/1.3673853

All-Optical Magnetic Recording with Circularly Polarized Light
journal, July 2007


Generation mechanism of terahertz coherent acoustic phonons in Fe
journal, June 2016


All-optical control of ferromagnetic thin films and nanostructures
journal, August 2014

  • Lambert, C. -H.; Mangin, S.; Varaprasad, B. S. D. C. S.
  • Science, Vol. 345, Issue 6202
  • DOI: 10.1126/science.1253493

Structural dynamics during laser-induced ultrafast demagnetization
journal, May 2017


Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure
journal, April 2008


Anisotropic lattice dynamics of FePt L 1 0 thin films
journal, September 2010


Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet
journal, September 2016

  • von Reppert, A.; Pudell, J.; Koc, A.
  • Structural Dynamics, Vol. 3, Issue 5
  • DOI: 10.1063/1.4961253

Resolving the role of femtosecond heated electrons in ultrafast spin dynamics
journal, February 2014

  • Mendil, J.; Nieves, P.; Chubykalo-Fesenko, O.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03980

Magnetic Stress as a Driving Force of Structural Distortions: The Case of CrN
journal, December 2000


Temperature dependence of electron-phonon thermalization and its correlation to ultrafast magnetism
journal, June 2010


    Works referencing / citing this record:

    Role of initial magnetic disorder: A time-dependent ab initio study of ultrafast demagnetization mechanisms
    journal, June 2019


    Role of initial magnetic disorder: A time-dependent ab initio study of ultrafast demagnetization mechanisms
    journal, June 2019