skip to main content

DOE PAGESDOE PAGES

Title: Beyond a phenomenological description of magnetostriction

Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here in this paper, we show how the source of magnetostriction—the underlying magnetoelastic stress—can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.
Authors:
ORCiD logo [1] ;  [2] ; ORCiD logo [3] ;  [4] ; ORCiD logo [5] ;  [6] ; ORCiD logo [7] ;  [2] ;  [2] ; ORCiD logo [8] ;  [2] ;  [9] ;  [9] ;  [4] ;  [10] ;  [10] ;  [2] ;  [10] ;  [10] ;  [11] more »;  [12] ;  [13] ;  [14] ;  [10] ;  [8] ;  [15] ; ORCiD logo [16] ;  [17] ; ORCiD logo [3] ;  [2] ;  [18] « less
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Accelerator Division
  3. Uppsala Univ. (Sweden). Dept. of Physics and Astronomy
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Applied Physics
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Centre National de la Recherche Scientifique (CNRS), Paris (France). Laboratoire de Chimie Physique -Matiere et Rayonnement; Sorbonne Univ., Paris (France)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Univ. of Amsterdam (Netherlands). Van der Waals-Zeeman Inst.
  7. Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics, Dept. of Condensed Matter Physics
  8. Brookhaven National Lab. (BNL), Upton, NY (United States)
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Physics
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  12. National Inst. for Materials Science (NIMS), Tsukuba (Japan). Magnetic Materials Unit
  13. HGST a Western Digital Company, San Jose, CA (United States). San Jose Research Center; Thomas J. Watson Research Center, Yorktown Heights, NY (United States)
  14. HGST a Western Digital Company, San Jose, CA (United States). San Jose Research Center; Technische Univ. Chemnitz (Germany). Inst. of Physics; Helmholtz-Zentrum Dresden–Rossendorf, Dresden (Germany). Inst. of Ion Beam Physics and Materials Research
  15. Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab), and Dept. of Physics
  16. Univ. of California, San Diego, CA (United States). Center for Memory and Recording Research
  17. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  18. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Uppsala Univ. (Sweden). Dept. of Physics and Astronomy
Publication Date:
Report Number(s):
BNL-203367-2018-JAAM
Journal ID: ISSN 2041-1723; PII: 2730; TRN: US1802254
Grant/Contract Number:
AC02-76SF00515; AC02-05CH11231; SC0012704
Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; Magnetic properties and materials; Nanoparticles; Structure of solids and liquids
OSTI Identifier:
1426182
Alternate Identifier(s):
OSTI ID: 1430847

Reid, A. H., Shen, X., Maldonado, P., Chase, T., Jal, E., Granitzka, P. W., Carva, K., Li, R. K., Li, J., Wu, L., Vecchione, T., Liu, T., Chen, Z., Higley, D. J., Hartmann, N., Coffee, R., Wu, J., Dakovski, G. L., Schlotter, W. F., Ohldag, H., Takahashi, Y. K., Mehta, V., Hellwig, O., Fry, A., Zhu, Y., Cao, J., Fullerton, E. E., Stöhr, J., Oppeneer, P. M., Wang, X. J., and Dürr, H. A.. Beyond a phenomenological description of magnetostriction. United States: N. p., Web. doi:10.1038/s41467-017-02730-7.
Reid, A. H., Shen, X., Maldonado, P., Chase, T., Jal, E., Granitzka, P. W., Carva, K., Li, R. K., Li, J., Wu, L., Vecchione, T., Liu, T., Chen, Z., Higley, D. J., Hartmann, N., Coffee, R., Wu, J., Dakovski, G. L., Schlotter, W. F., Ohldag, H., Takahashi, Y. K., Mehta, V., Hellwig, O., Fry, A., Zhu, Y., Cao, J., Fullerton, E. E., Stöhr, J., Oppeneer, P. M., Wang, X. J., & Dürr, H. A.. Beyond a phenomenological description of magnetostriction. United States. doi:10.1038/s41467-017-02730-7.
Reid, A. H., Shen, X., Maldonado, P., Chase, T., Jal, E., Granitzka, P. W., Carva, K., Li, R. K., Li, J., Wu, L., Vecchione, T., Liu, T., Chen, Z., Higley, D. J., Hartmann, N., Coffee, R., Wu, J., Dakovski, G. L., Schlotter, W. F., Ohldag, H., Takahashi, Y. K., Mehta, V., Hellwig, O., Fry, A., Zhu, Y., Cao, J., Fullerton, E. E., Stöhr, J., Oppeneer, P. M., Wang, X. J., and Dürr, H. A.. 2018. "Beyond a phenomenological description of magnetostriction". United States. doi:10.1038/s41467-017-02730-7. https://www.osti.gov/servlets/purl/1426182.
@article{osti_1426182,
title = {Beyond a phenomenological description of magnetostriction},
author = {Reid, A. H. and Shen, X. and Maldonado, P. and Chase, T. and Jal, E. and Granitzka, P. W. and Carva, K. and Li, R. K. and Li, J. and Wu, L. and Vecchione, T. and Liu, T. and Chen, Z. and Higley, D. J. and Hartmann, N. and Coffee, R. and Wu, J. and Dakovski, G. L. and Schlotter, W. F. and Ohldag, H. and Takahashi, Y. K. and Mehta, V. and Hellwig, O. and Fry, A. and Zhu, Y. and Cao, J. and Fullerton, E. E. and Stöhr, J. and Oppeneer, P. M. and Wang, X. J. and Dürr, H. A.},
abstractNote = {Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here in this paper, we show how the source of magnetostriction—the underlying magnetoelastic stress—can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.},
doi = {10.1038/s41467-017-02730-7},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {1}
}