skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials

Abstract

Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF 3, H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic–structural comparison with the corresponding FeCl, FeNO, and Fe 2(μ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes—Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]} 2O, and Fe[TPC]Ph—were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8 eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5 fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C 4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected Fe IV-like description, in contrast to Fe[TPC]Cl andmore » Fe[TPC](NO), in which the Fe is thought to be Fe III-like. In conclusion, these results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.« less

Authors:
 [1];  [2];  [3];  [2]; ORCiD logo [3]
  1. Univ. of Tromso - The Arctic Univ. of Norway (UiT), Tromso (Norway). Dept. of Chemistry and Center for Theoretical and Computational Chemistry
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  3. Univ. of Tromso - The Arctic Univ. of Norway (UiT), Tromso (Norway). Dept. of Chemistry and Center for Theoretical and Computational Chemistry
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); Research Council of Norway; National Institutes of Health (NIH)
OSTI Identifier:
1425580
Grant/Contract Number:  
AC02-76SF00515; P41GM103393
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Volume: 23; Journal Issue: 60; Journal ID: ISSN 0947-6539
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; corroles; iron; noninnocence; XANES; X-ray absorption spectroscopy

Citation Formats

Ganguly, Sumit, Giles, Logan J., Thomas, Kolle E., Sarangi, Ritimukta, and Ghosh, Abhik. Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials. United States: N. p., 2017. Web. doi:10.1002/chem.201702621.
Ganguly, Sumit, Giles, Logan J., Thomas, Kolle E., Sarangi, Ritimukta, & Ghosh, Abhik. Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials. United States. doi:10.1002/chem.201702621.
Ganguly, Sumit, Giles, Logan J., Thomas, Kolle E., Sarangi, Ritimukta, and Ghosh, Abhik. Fri . "Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials". United States. doi:10.1002/chem.201702621. https://www.osti.gov/servlets/purl/1425580.
@article{osti_1425580,
title = {Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials},
author = {Ganguly, Sumit and Giles, Logan J. and Thomas, Kolle E. and Sarangi, Ritimukta and Ghosh, Abhik},
abstractNote = {Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF3, H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic–structural comparison with the corresponding FeCl, FeNO, and Fe2(μ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes—Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]}2O, and Fe[TPC]Ph—were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8 eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5 fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected FeIV-like description, in contrast to Fe[TPC]Cl and Fe[TPC](NO), in which the Fe is thought to be FeIII-like. In conclusion, these results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.},
doi = {10.1002/chem.201702621},
journal = {Chemistry - A European Journal},
number = 60,
volume = 23,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


A First TDDFT Study of Metallocorrole Electronic Spectra: Copper meso-Triarylcorroles Exhibit Hyper Spectra
journal, March 2011

  • Alemayehu, Abraham; Conradie, Jeanet; Ghosh, Abhik
  • European Journal of Inorganic Chemistry, Vol. 2011, Issue 12
  • DOI: 10.1002/ejic.201001026

Platinum corroles
journal, January 2014

  • Alemayehu, Abraham B.; Vazquez-Lima, Hugo; Beavers, Christine M.
  • Chem. Commun., Vol. 50, Issue 76
  • DOI: 10.1039/C4CC02548B

Ligand Noninnocence in Silver Corroles: A XANES Investigation: Ligand Noninnocence in Silver Corroles: A XANES Investigation
journal, June 2016

  • Sarangi, Ritimukta; Giles, Logan J.; Thomas, Kolle E.
  • European Journal of Inorganic Chemistry, Vol. 2016, Issue 20
  • DOI: 10.1002/ejic.201600413

Is the Corrolate Macrocycle Innocent or Noninnocent? Magnetic Susceptibility, Mössbauer, 1 H NMR, and DFT Investigations of Chloro- and Phenyliron Corrolates
journal, June 2002

  • Zakharieva, Olga; Schünemann, Volker; Gerdan, Michael
  • Journal of the American Chemical Society, Vol. 124, Issue 23
  • DOI: 10.1021/ja012701h

Gold corroles
journal, February 2011

  • Alemayehu, Abraham B.; Ghosh, Abhik
  • Journal of Porphyrins and Phthalocyanines, Vol. 15, Issue 02
  • DOI: 10.1142/S1088424611003045

Ligand noninnocence in FeNO corroles: insights from β-octabromocorrole complexes
journal, January 2016

  • Norheim, Hans-Kristian; Capar, Jan; Einrem, Rune F.
  • Dalton Transactions, Vol. 45, Issue 2
  • DOI: 10.1039/C5DT03947A

Substituent effects on metallocorrole spectra: insights from chromium-oxo and molybdenum-oxo triarylcorroles
journal, November 2011

  • Johansen, Inge; Norheim, Hans-Kristian; Larsen, Simon
  • Journal of Porphyrins and Phthalocyanines, Vol. 15, Issue 11n12
  • DOI: 10.1142/S1088424611004270

Oxidative Metalation as a Route to Size-Mismatched Macrocyclic Complexes: Osmium Corroles
journal, October 2014

  • Alemayehu, Abraham B.; Gagnon, Kevin J.; Terner, James
  • Angewandte Chemie International Edition, Vol. 53, Issue 52
  • DOI: 10.1002/anie.201405890

Revisiting the Electronic Ground State of Copper Corroles
journal, January 2007

  • Bröring, Martin; Brégier, Frédérique; Cónsul Tejero, Esther
  • Angewandte Chemie International Edition, Vol. 46, Issue 3
  • DOI: 10.1002/anie.200603676

Metal-Ligand Misfits: Facile Access to Rhenium-Oxo Corroles by Oxidative Metalation
journal, December 2015

  • Einrem, Rune F.; Gagnon, Kevin J.; Alemayehu, Abraham B.
  • Chemistry - A European Journal, Vol. 22, Issue 2
  • DOI: 10.1002/chem.201504307

High-Resolution X-ray Emission and X-ray Absorption Spectroscopy
journal, June 2001


Synthesis and Molecular Structure of Gold Triarylcorroles
journal, December 2011

  • Thomas, Kolle E.; Alemayehu, Abraham B.; Conradie, Jeanet
  • Inorganic Chemistry, Vol. 50, Issue 24
  • DOI: 10.1021/ic202023r

Electronic Structure of Transition Metal−Isocorrole Complexes: A First Quantum Chemical Study
journal, June 2004

  • van Oort, Bart; Tangen, Espen; Ghosh, Abhik
  • European Journal of Inorganic Chemistry, Vol. 2004, Issue 12
  • DOI: 10.1002/ejic.200300949

X-ray Structure and Variable Temperature NMR Spectra of [ m eso -Triarylcorrolato]copper(III)
journal, July 2003

  • Brückner, Christian; Briñas, Raymond P.; Krause Bauer, Jeanette A.
  • Inorganic Chemistry, Vol. 42, Issue 15
  • DOI: 10.1021/ic034080u

Synthesis and Molecular Structure of 99 Tc Corroles
journal, November 2016

  • Einrem, Rune F.; Braband, Henrik; Fox, Thomas
  • Chemistry - A European Journal, Vol. 22, Issue 52
  • DOI: 10.1002/chem.201605015

Phenyl Derivative of Iron 5,10,15-Tritolylcorrole
journal, March 2014

  • Nardis, Sara; Cicero, Daniel O.; Licoccia, Silvia
  • Inorganic Chemistry, Vol. 53, Issue 8
  • DOI: 10.1021/ic5003572

Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
journal, January 2005

  • Weigend, Florian; Ahlrichs, Reinhart
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18, p. 3297-3305
  • DOI: 10.1039/b508541a

Iron corrolates: Unambiguous chloroiron(III) (corrolate)2− π-cation radicals
journal, April 2006


X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M–O2 systems
journal, January 2013


Calculation of Solvent Shifts on Electronic g -Tensors with the Conductor-Like Screening Model (COSMO) and Its Self-Consistent Generalization to Real Solvents (Direct COSMO-RS)
journal, February 2006

  • Sinnecker, Sebastian; Rajendran, Arivazhagan; Klamt, Andreas
  • The Journal of Physical Chemistry A, Vol. 110, Issue 6
  • DOI: 10.1021/jp056016z

Not Innocent: Verdict from Ab Initio Multiconfigurational Second-Order Perturbation Theory on the Electronic Structure of Chloroiron Corrole
journal, November 2008

  • Roos, Björn O.; Veryazov, Valera; Conradie, Jeanet
  • The Journal of Physical Chemistry B, Vol. 112, Issue 45
  • DOI: 10.1021/jp807734x

Fe L- and K-edge XAS of Low-Spin Ferric Corrole: Bonding and Reactivity Relative to Low-Spin Ferric Porphyrin
journal, February 2009

  • Hocking, Rosalie K.; George, Serena DeBeer; Gross, Zeev
  • Inorganic Chemistry, Vol. 48, Issue 4
  • DOI: 10.1021/ic802248t

Spectroelectrochemical and ESR studies of highly substituted copper corroles
journal, October 2004

  • Ou, Zhongping; Shao, Jianguo; Zhao, Hui
  • Journal of Porphyrins and Phthalocyanines, Vol. 08, Issue 10
  • DOI: 10.1142/S1088424604000593

Efficient Synthesis of meso-Substituted Corroles in a H 2 O−MeOH Mixture
journal, May 2006

  • Koszarna, Beata; Gryko, Daniel T.
  • The Journal of Organic Chemistry, Vol. 71, Issue 10
  • DOI: 10.1021/jo060007k

Gold(I) and Gold(III) Corroles
journal, October 2011

  • Rabinovich, Elena; Goldberg, Israel; Gross, Zeev
  • Chemistry - A European Journal, Vol. 17, Issue 44
  • DOI: 10.1002/chem.201102348

Iron(III) and Iron(IV) Corroles:  Synthesis, Spectroscopy, Structures, and No Indications for Corrole Radicals
journal, October 2002

  • Simkhovich, Liliya; Goldberg, Israel; Gross, Zeev
  • Inorganic Chemistry, Vol. 41, Issue 21
  • DOI: 10.1021/ic020118b

Zum elektronischen Grundzustand des Kupfercorrols
journal, January 2007

  • Bröring, Martin; Brégier, Frédérique; Cónsul Tejero, Esther
  • Angewandte Chemie, Vol. 119, Issue 3
  • DOI: 10.1002/ange.200603676

Oxidative Metalation as a Route to Size-Mismatched Macrocyclic Complexes: Osmium Corroles
journal, October 2014

  • Alemayehu, Abraham B.; Gagnon, Kevin J.; Terner, James
  • Angewandte Chemie, Vol. 126, Issue 52
  • DOI: 10.1002/ange.201405890

Electronic Absorption and Resonance Raman Signatures of Hyperporphyrins and Nonplanar Porphyrins
journal, April 2003

  • Wasbotten, Ingar H.; Conradie, Jeanet; Ghosh, Abhik
  • The Journal of Physical Chemistry B, Vol. 107, Issue 15
  • DOI: 10.1021/jp014417i

Molecular structure of a gold β-octakis(trifluoromethyl)- meso -triarylcorrole: an 85° difference in saddling dihedral relative to copper
journal, April 2012


Wolves in Sheep's Clothing: μ-Oxo-Diiron Corroles Revisited
journal, June 2016

  • Ganguly, Sumit; Vazquez-Lima, Hugo; Ghosh, Abhik
  • Chemistry - A European Journal, Vol. 22, Issue 30
  • DOI: 10.1002/chem.201601062

Prediction of high-valent iron K-edge absorption spectra by time-dependent Density Functional Theory
journal, January 2011

  • Chandrasekaran, P.; Stieber, S. Chantal E.; Collins, Terrence J.
  • Dalton Transactions, Vol. 40, Issue 42
  • DOI: 10.1039/c1dt11331c

Recent developments in manganese corrole chemistry
journal, April 2013

  • Liu, Hai-Yang; Mahmood, Mian HR; Qiu, Sheng-Xiang (Samuel)
  • Coordination Chemistry Reviews, Vol. 257, Issue 7-8
  • DOI: 10.1016/j.ccr.2012.12.017

Cryptic noninnocence: FeNO corroles in a new light
journal, January 2015

  • Vazquez-Lima, Hugo; Norheim, Hans-Kristian; Einrem, Rune F.
  • Dalton Transactions, Vol. 44, Issue 22
  • DOI: 10.1039/C5DT01495F

Undecaphenylcorroles
journal, September 2012

  • Berg, Steffen; Thomas, Kolle E.; Beavers, Christine M.
  • Inorganic Chemistry, Vol. 51, Issue 18
  • DOI: 10.1021/ic301388e

Theoretical Evidence Favoring True Iron(V)-Oxo Corrole and Corrolazine Intermediates
journal, June 2006

  • Wasbotten, Ingar; Ghosh, Abhik
  • Inorganic Chemistry, Vol. 45, Issue 13
  • DOI: 10.1021/ic0602493

Nonplanar, Noninnocent, and Chiral: A Strongly Saddled Metallocorrole
journal, September 2010

  • Alemayehu, Abraham B.; Hansen, Lars Kristian; Ghosh, Abhik
  • Inorganic Chemistry, Vol. 49, Issue 17
  • DOI: 10.1021/ic1008736

Ligand Noninnocence in Coinage Metal Corroles: A Silver Knife-Edge
journal, September 2015

  • Thomas, Kolle E.; Vazquez-Lima, Hugo; Fang, Yuanyuan
  • Chemistry - A European Journal, Vol. 21, Issue 47
  • DOI: 10.1002/chem.201502150

Metallocorrole mit formal vierwertigem Eisen
journal, March 1994

  • Vogel, Emanuel; Will, Stefan; Tilling, Andreas Schulze
  • Angewandte Chemie, Vol. 106, Issue 7
  • DOI: 10.1002/ange.19941060708

Copper Corroles Are Inherently Saddled
journal, August 2009

  • Alemayehu, Abraham B.; Gonzalez, Emmanuel; Hansen, Lars Kristian
  • Inorganic Chemistry, Vol. 48, Issue 16
  • DOI: 10.1021/ic900744v

Metallocorroles with Formally Tetravalent Iron
journal, April 1994

  • Vogel, Emanuel; Will, Stefan; Tilling, Andreas Schulze
  • Angewandte Chemie International Edition in English, Vol. 33, Issue 7
  • DOI: 10.1002/anie.199407311

    Works referencing / citing this record:

    Bis‐copper(II) Complex of Triply‐linked Corrole Dimer and Its Dication
    journal, August 2018

    • Ooi, Shota; Tanaka, Takayuki; Ikeue, Takahisa
    • Chemistry – An Asian Journal, Vol. 14, Issue 10
    • DOI: 10.1002/asia.201801467