DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Topological crystalline magnets: Symmetry-protected topological phases of fermions

Abstract

Here, we introduce a novel class of interaction-enabled topological crystalline insulators in two- and three-dimensional electronic systems, which we call “topological crystalline magnet.” It is protected by the product of the time-reversal symmetry T and a mirror symmetry or a rotation symmetry R. A topological crystalline magnet exhibits two intriguing features: (i) it cannot be adiabatically connected to any Slater insulator and (ii) the edge state is robust against coupling electrons to the edge. These features are protected by the anomalous symmetry transformation property (RT)2 = -1 of the edge state. Finally, an anisotropic response to the external magnetic field can be an experimental signature.

Authors:
 [1];  [2]
  1. Univ. of Tokyo (Japan). Department of Applied Physics
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Department of Physics
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1424926
Alternate Identifier(s):
OSTI ID: 1345077
Grant/Contract Number:  
SC0010526
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 8; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Strongly Correlated Electrons; Mesoscale and Nanoscale Physics; Materials Science; Other Condensed Matter

Citation Formats

Watanabe, Haruki, and Fu, Liang. Topological crystalline magnets: Symmetry-protected topological phases of fermions. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.95.081107.
Watanabe, Haruki, & Fu, Liang. Topological crystalline magnets: Symmetry-protected topological phases of fermions. United States. https://doi.org/10.1103/PhysRevB.95.081107
Watanabe, Haruki, and Fu, Liang. Mon . "Topological crystalline magnets: Symmetry-protected topological phases of fermions". United States. https://doi.org/10.1103/PhysRevB.95.081107. https://www.osti.gov/servlets/purl/1424926.
@article{osti_1424926,
title = {Topological crystalline magnets: Symmetry-protected topological phases of fermions},
author = {Watanabe, Haruki and Fu, Liang},
abstractNote = {Here, we introduce a novel class of interaction-enabled topological crystalline insulators in two- and three-dimensional electronic systems, which we call “topological crystalline magnet.” It is protected by the product of the time-reversal symmetry T and a mirror symmetry or a rotation symmetry R. A topological crystalline magnet exhibits two intriguing features: (i) it cannot be adiabatically connected to any Slater insulator and (ii) the edge state is robust against coupling electrons to the edge. These features are protected by the anomalous symmetry transformation property (RT)2 = -1 of the edge state. Finally, an anisotropic response to the external magnetic field can be an experimental signature.},
doi = {10.1103/PhysRevB.95.081107},
journal = {Physical Review B},
number = 8,
volume = 95,
place = {United States},
year = {Mon Feb 27 00:00:00 EST 2017},
month = {Mon Feb 27 00:00:00 EST 2017}
}

Journal Article:

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: The 1D model. Each gray bond represents a singlet pair of neighboring twomore » $\hat{\vecΓ}$ ̂$^{μ}_{x}$’s and orange dots illustrate the edge degrees of freedom. A gapless edge state appears on each edge of a finite-size system. The edge degrees of freedom satisfy ($\mathcal{R̂}$$\mathcal{T̂}$ )2 = − , which is distinct from physical electrons or edge states of noninteracting topological insulators.« less

Save / Share:

Works referenced in this record:

Direct observation and temperature control of the surface Dirac gap in a topological crystalline insulator
journal, October 2015

  • Wojek, B. M.; Berntsen, M. H.; Jonsson, V.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9463

Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe
journal, January 2012

  • Xu, Su-Yang; Liu, Chang; Alidoust, N.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2191

Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator
journal, August 2013


Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals
journal, November 2015

  • Watanabe, Haruki; Po, Hoi Chun; Vishwanath, Ashvin
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 47
  • DOI: 10.1073/pnas.1514665112

Coupled-layer description of topological crystalline insulators
journal, September 2016


Rigorous results on valence-bond ground states in antiferromagnets
journal, August 1987


Topological insulators and superconductors
journal, October 2011


Strong side of weak topological insulators
journal, July 2012


Topological Insulators from Group Cohomology
journal, April 2016


Hourglass fermions
journal, April 2016

  • Wang, Zhijun; Alexandradinata, A.; Cava, R. J.
  • Nature, Vol. 532, Issue 7598
  • DOI: 10.1038/nature17410

Breakdown of the topological classification Z for gapped phases of noninteracting fermions by quartic interactions
journal, September 2015


Topological nonsymmorphic crystalline insulators
journal, August 2014


Classifying quantum phases using matrix product states and projected entangled pair states
journal, October 2011


Topology of crystalline insulators and superconductors
journal, October 2014


Theory of interacting topological crystalline insulators
journal, August 2015


Topological Crystalline Insulators and Topological Superconductors: From Concepts to Materials
journal, March 2015


Colloquium: Topological insulators
journal, November 2010


Topological order and absence of band insulators at integer filling in non-symmorphic crystals
journal, April 2013

  • Parameswaran, Siddharth A.; Turner, Ari M.; Arovas, Daniel P.
  • Nature Physics, Vol. 9, Issue 5
  • DOI: 10.1038/nphys2600

Symmetry-Protected Topological Phases of Quantum Matter
journal, March 2015


Topological Phases Protected by Point Group Symmetry
journal, February 2017


Interaction-enabled topological crystalline phases
journal, March 2016


Experimental realization of a topological crystalline insulator in SnTe
journal, September 2012

  • Tanaka, Y.; Ren, Zhi; Sato, T.
  • Nature Physics, Vol. 8, Issue 11
  • DOI: 10.1038/nphys2442

Topology of nonsymmorphic crystalline insulators and superconductors
journal, May 2016


Topological Crystalline Insulators
journal, March 2011


Equivalence of the antiferromagnetic Heisenberg ladder to a single S =1 chain
journal, January 1996


Topological Insulators in Three Dimensions
journal, March 2007


Antiferromagnetic topological insulators
journal, June 2010


Topological crystalline insulator states in Pb1−xSnxSe
journal, September 2012

  • Dziawa, P.; Kowalski, B. J.; Dybko, K.
  • Nature Materials, Vol. 11, Issue 12
  • DOI: 10.1038/nmat3449

Classification of topological quantum matter with symmetries
journal, August 2016


Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators
journal, February 2015

  • Zeljkovic, Ilija; Okada, Yoshinori; Serbyn, Maksym
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4215

Featureless quantum insulator on the honeycomb lattice
journal, August 2016


Z 2 topology in nonsymmorphic crystalline insulators: Möbius twist in surface states
journal, April 2015


Topological crystalline insulators in the SnTe material class
journal, January 2012

  • Hsieh, Timothy H.; Lin, Hsin; Liu, Junwei
  • Nature Communications, Vol. 3, Article No. 982
  • DOI: 10.1038/ncomms1969

New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic
journal, April 2015


Entanglement spectrum of a topological phase in one dimension
journal, February 2010


Classification of gapped symmetric phases in one-dimensional spin systems
journal, January 2011


Bosonic symmetry-protected topological phases with reflection symmetry
journal, December 2015


Flux-Fusion Anomaly Test and Bosonic Topological Crystalline Insulators
journal, October 2016


Symmetry-protected topological states of interacting fermions and bosons
journal, December 2014


Phase transitions between topologically distinct gapped phases in isotropic spin ladders
journal, December 2000


Topological crystalline Bose insulator in two dimensions via entanglement spectrum
journal, November 2015


Hourglass fermion surface states in stacked topological insulators with nonsymmorphic symmetry
journal, October 2016


String order and adiabatic continuity of Haldane chains and band insulators
journal, April 2007


Valence bond ground states in isotropic quantum antiferromagnets
journal, September 1988

  • Affleck, Ian; Kennedy, Tom; Lieb, Elliott H.
  • Communications in Mathematical Physics, Vol. 115, Issue 3
  • DOI: 10.1007/BF01218021

Symmetry-Protected Topological Orders in Interacting Bosonic Systems
journal, December 2012


Works referencing / citing this record:

Many-body topological invariants for fermionic short-range entangled topological phases protected by antiunitary symmetries
journal, July 2018


Higher-order symmetry-protected topological states for interacting bosons and fermions
text, January 2018

  • You, Yizhi; Devakul, Trithep; Burnell, F. J.
  • American Physical Society
  • DOI: 10.5167/uzh-161776

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.