DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Imaging electron motion in graphene

Abstract

A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imaging techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooledmore » scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz-1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less

Authors:
 [1];  [2]
  1. Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences
  2. Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences. Dept. of Physics
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1423805
Grant/Contract Number:  
FG02-07ER46422; 1541959
Resource Type:
Accepted Manuscript
Journal Name:
Semiconductor Science and Technology
Additional Journal Information:
Journal Volume: 32; Journal Issue: 2; Journal ID: ISSN 0268-1242
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 47 OTHER INSTRUMENTATION; graphene; electron motion; scanning probe; magnetic focusing; scanning capacitance; imaging

Citation Formats

Bhandari, Sagar, and Westervelt, Robert M. Imaging electron motion in graphene. United States: N. p., 2017. Web. doi:10.1088/1361-6641/32/2/024001.
Bhandari, Sagar, & Westervelt, Robert M. Imaging electron motion in graphene. United States. https://doi.org/10.1088/1361-6641/32/2/024001
Bhandari, Sagar, and Westervelt, Robert M. Thu . "Imaging electron motion in graphene". United States. https://doi.org/10.1088/1361-6641/32/2/024001. https://www.osti.gov/servlets/purl/1423805.
@article{osti_1423805,
title = {Imaging electron motion in graphene},
author = {Bhandari, Sagar and Westervelt, Robert M.},
abstractNote = {A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imaging techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz-1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.},
doi = {10.1088/1361-6641/32/2/024001},
journal = {Semiconductor Science and Technology},
number = 2,
volume = 32,
place = {United States},
year = {Thu Jan 05 00:00:00 EST 2017},
month = {Thu Jan 05 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrons in artificial atoms
journal, February 1996


Subsurface charge accumulation imaging of a quantum Hall liquid
journal, March 1998

  • Tessmer, S. H.; Glicofridis, P. I.; Ashoori, R. C.
  • Nature, Vol. 392, Issue 6671
  • DOI: 10.1038/32112

Imaging of low-compressibility strips in the quantum Hall liquid
journal, June 2000


Imaging Transport Resonances in the Quantum Hall Effect
journal, September 2005


Electrical imaging of the quantum Hall state
journal, June 1999


Imaging Coherent Electron Flow from a Quantum Point Contact
journal, September 2000


Coherent branched flow in a two-dimensional electron gas
journal, March 2001

  • Topinka, M. A.; LeRoy, B. J.; Westervelt, R. M.
  • Nature, Vol. 410, Issue 6825
  • DOI: 10.1038/35065553

Imaging electron density in a two-dimensional electron gas
journal, June 2002

  • LeRoy, B. J.; Topinka, M. A.; Westervelt, R. M.
  • Applied Physics Letters, Vol. 80, Issue 23
  • DOI: 10.1063/1.1484548

Imaging Electron Interferometer
journal, April 2005


Unexpected features of branched flow through high-mobility two-dimensional electron gases
journal, November 2007

  • Jura, M. P.; Topinka, M. A.; Urban, L.
  • Nature Physics, Vol. 3, Issue 12
  • DOI: 10.1038/nphys756

Imaging magnetic focusing of coherent electron waves
journal, June 2007

  • Aidala, Katherine E.; Parrott, Robert E.; Kramer, Tobias
  • Nature Physics, Vol. 3, Issue 7
  • DOI: 10.1038/nphys628

Imaging a Single-Electron Quantum Dot
journal, February 2005

  • Fallahi, Parisa; Bleszynski, Ania C.; Westervelt, Robert M.
  • Nano Letters, Vol. 5, Issue 2
  • DOI: 10.1021/nl048405v

Scanned Probe Imaging of Quantum Dots inside InAs Nanowires
journal, September 2007

  • Bleszynski, Ania C.; Zwanenburg, Floris A.; Westervelt, R. M.
  • Nano Letters, Vol. 7, Issue 9
  • DOI: 10.1021/nl0621037

Imaging a one-electron InAs quantum dot in an InAs/InP nanowire
journal, June 2008

  • Bleszynski-Jayich, Ania C.; Fröberg, Linus E.; Björk, Mikael T.
  • Physical Review B, Vol. 77, Issue 24
  • DOI: 10.1103/PhysRevB.77.245327

Imaging a coupled quantum dot-quantum point contact system
journal, October 2007

  • Gildemeister, A. E.; Ihn, T.; Schleser, R.
  • Journal of Applied Physics, Vol. 102, Issue 8
  • DOI: 10.1063/1.2787163

Resonant Electron Scattering by Defects in Single-Walled Carbon Nanotubes
journal, January 2001


Scanned Probe Imaging of Single-Electron Charge States in Nanotube Quantum Dots
journal, May 2002


Observation of electron–hole puddles in graphene using a scanning single-electron transistor
journal, November 2007

  • Martin, J.; Akerman, N.; Ulbricht, G.
  • Nature Physics, Vol. 4, Issue 2
  • DOI: 10.1038/nphys781

Origin of spatial charge inhomogeneity in graphene
journal, August 2009

  • Zhang, Yuanbo; Brar, Victor W.; Girit, Caglar
  • Nature Physics, Vol. 5, Issue 10
  • DOI: 10.1038/nphys1365

Imaging localized states in graphene nanostructures
journal, October 2010


Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


The Band Theory of Graphite
journal, May 1947


The electronic properties of graphene
journal, January 2009

  • Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.
  • Reviews of Modern Physics, Vol. 81, Issue 1, p. 109-162
  • DOI: 10.1103/RevModPhys.81.109

The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Experimental observation of the quantum Hall effect and Berry's phase in graphene
journal, November 2005

  • Zhang, Yuanbo; Tan, Yan-Wen; Stormer, Horst L.
  • Nature, Vol. 438, Issue 7065, p. 201-204
  • DOI: 10.1038/nature04235

Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene
journal, February 2006

  • Novoselov, K. S.; McCann, E.; Morozov, S. V.
  • Nature Physics, Vol. 2, Issue 3
  • DOI: 10.1038/nphys245

Chiral tunnelling and the Klein paradox in graphene
journal, August 2006

  • Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K.
  • Nature Physics, Vol. 2, Issue 9
  • DOI: 10.1038/nphys384

Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons
journal, October 2014

  • Magda, Gábor Zsolt; Jin, Xiaozhan; Hagymási, Imre
  • Nature, Vol. 514, Issue 7524
  • DOI: 10.1038/nature13831

Valley filter and valley valve in graphene
journal, February 2007

  • Rycerz, A.; Tworzydło, J.; Beenakker, C. W. J.
  • Nature Physics, Vol. 3, Issue 3, p. 172-175
  • DOI: 10.1038/nphys547

Strong Suppression of Weak Localization in Graphene
journal, July 2006


Aharonov-Bohm effect and broken valley degeneracy in graphene rings
journal, December 2007


Boron nitride substrates for high-quality graphene electronics
journal, August 2010

  • Dean, C. R.; Young, A. F.; Meric, I.
  • Nature Nanotechnology, Vol. 5, Issue 10, p. 722-726
  • DOI: 10.1038/nnano.2010.172

Observation of the fractional quantum Hall effect in graphene
journal, November 2009

  • Bolotin, Kirill I.; Ghahari, Fereshte; Shulman, Michael D.
  • Nature, Vol. 462, Issue 7270
  • DOI: 10.1038/nature08582

Quantum interference and Klein tunnelling in graphene heterojunctions
journal, February 2009

  • Young, Andrea F.; Kim, Philip
  • Nature Physics, Vol. 5, Issue 3
  • DOI: 10.1038/nphys1198

Imaging Cyclotron Orbits of Electrons in Graphene
journal, February 2016


Low-Temperature Scanning Capacitance Probe for Imaging Electron Motion
journal, December 2014


Electrically tunable transverse magnetic focusing in graphene
journal, February 2013

  • Taychatanapat, Thiti; Watanabe, Kenji; Taniguchi, Takashi
  • Nature Physics, Vol. 9, Issue 4
  • DOI: 10.1038/nphys2549

Signature of chirality in scanning-probe imaging of charge flow in graphene
journal, March 2008


High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator
journal, March 2015

  • Chang, Cui-Zu; Zhao, Weiwei; Kim, Duk Y.
  • Nature Materials, Vol. 14, Issue 5
  • DOI: 10.1038/nmat4204

Works referencing / citing this record:

Optical radiation induced chaotic dynamics of electrons in a uniform magnetic field
journal, November 2019

  • Yar, Abdullah; Zubair, Muhammad; Sabeeh, Kashif
  • Journal of Physics: Condensed Matter, Vol. 32, Issue 9
  • DOI: 10.1088/1361-648x/ab5767

Special Issue on hybrid quantum materials and devices
journal, February 2019

  • Roddaro, Stefano; Fischer, Saskia F.; Ishibashi, Koji
  • Semiconductor Science and Technology, Vol. 34, Issue 3
  • DOI: 10.1088/1361-6641/ab04c4

Chaotic transport of electron wave packet in Weyl semimetal slab
journal, May 2019