DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Yielding of tantalum at strain rates up to 109 s–1

Abstract

We have used a 45 μJ laser pulse to accelerate the free surface of fine-grained tantalum films up to peak velocities of ∼1.2 km s−1. The films had thicknesses of ∼1–2 μm and in-plane grain widths of ∼75–150 nm. Using ultrafast interferometry, we have measured the time history of the velocity of the surface at different spatial positions across the accelerated region. The initial part of the histories (assumed to correspond to the “elastic precursor” observed previously) exhibited measured strain rates of ∼0.6 to ∼3.2 × 109 s−1 and stresses of ∼4 to ∼22 GPa. Importantly, we find that elastic amplitudes exhibit little variation with strain rate for a constant peak surface velocity, even though, via covariation of the strain rate with peak surface velocity, they vary with strain rate. Furthermore, by comparison with data obtained at lower strain rates, we find that amplitudes are much better predicted by peak velocities rather than by either strain rate or sample thickness.

Authors:
 [1];  [1];  [1]; ORCiD logo [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1438742
Alternate Identifier(s):
OSTI ID: 1420659
Report Number(s):
LLNL-JRNL-690544
Journal ID: ISSN 0003-6951; TRN: US1900509
Grant/Contract Number:  
AC52-07NA27344; 12ERD042
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 109; Journal Issue: 9; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Crowhurst, Jonathan C., Armstrong, Michael R., Gates, Sean D., Zaug, Joseph M., Radousky, Harry B., and Teslich, Nick E. Yielding of tantalum at strain rates up to 109 s–1. United States: N. p., 2016. Web. doi:10.1063/1.4960796.
Crowhurst, Jonathan C., Armstrong, Michael R., Gates, Sean D., Zaug, Joseph M., Radousky, Harry B., & Teslich, Nick E. Yielding of tantalum at strain rates up to 109 s–1. United States. https://doi.org/10.1063/1.4960796
Crowhurst, Jonathan C., Armstrong, Michael R., Gates, Sean D., Zaug, Joseph M., Radousky, Harry B., and Teslich, Nick E. Mon . "Yielding of tantalum at strain rates up to 109 s–1". United States. https://doi.org/10.1063/1.4960796. https://www.osti.gov/servlets/purl/1438742.
@article{osti_1438742,
title = {Yielding of tantalum at strain rates up to 109 s–1},
author = {Crowhurst, Jonathan C. and Armstrong, Michael R. and Gates, Sean D. and Zaug, Joseph M. and Radousky, Harry B. and Teslich, Nick E.},
abstractNote = {We have used a 45 μJ laser pulse to accelerate the free surface of fine-grained tantalum films up to peak velocities of ∼1.2 km s−1. The films had thicknesses of ∼1–2 μm and in-plane grain widths of ∼75–150 nm. Using ultrafast interferometry, we have measured the time history of the velocity of the surface at different spatial positions across the accelerated region. The initial part of the histories (assumed to correspond to the “elastic precursor” observed previously) exhibited measured strain rates of ∼0.6 to ∼3.2 × 109 s−1 and stresses of ∼4 to ∼22 GPa. Importantly, we find that elastic amplitudes exhibit little variation with strain rate for a constant peak surface velocity, even though, via covariation of the strain rate with peak surface velocity, they vary with strain rate. Furthermore, by comparison with data obtained at lower strain rates, we find that amplitudes are much better predicted by peak velocities rather than by either strain rate or sample thickness.},
doi = {10.1063/1.4960796},
journal = {Applied Physics Letters},
number = 9,
volume = 109,
place = {United States},
year = {Mon Aug 29 00:00:00 EDT 2016},
month = {Mon Aug 29 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Strain-rate dependence of ramp-wave evolution and strength in tantalum
journal, August 2016


Invariance of the Dissipative Action at Ultrahigh Strain Rates Above the Strong Shock Threshold
journal, September 2011


Measurement of Shock Wave Rise Times in Metal Thin Films
journal, October 2000


Flow strength of tantalum under ramp compression to 250 GPa
journal, January 2014

  • Brown, J. L.; Alexander, C. S.; Asay, J. R.
  • Journal of Applied Physics, Vol. 115, Issue 4
  • DOI: 10.1063/1.4863463

The α→ϵ phase transition in iron at strain rates up to ∼10 9  s −1
journal, March 2014

  • Crowhurst, Jonathan C.; Reed, Bryan W.; Armstrong, Michael R.
  • Journal of Applied Physics, Vol. 115, Issue 11
  • DOI: 10.1063/1.4868676

Sub-100 ps laser-driven dynamic compression of solid deuterium with a ∼40  μ J laser pulse
journal, July 2014

  • Armstrong, Michael R.; Crowhurst, Jonathan C.; Bastea, Sorin
  • Applied Physics Letters, Vol. 105, Issue 2
  • DOI: 10.1063/1.4890087

Yield strength of tantalum for shockless compression to 18 GPa
journal, October 2009

  • Asay, J. R.; Ao, T.; Vogler, T. J.
  • Journal of Applied Physics, Vol. 106, Issue 7
  • DOI: 10.1063/1.3226882

Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide
journal, October 2013

  • Armstrong, Michael R.; Zaug, Joseph M.; Goldman, Nir
  • The Journal of Physical Chemistry A, Vol. 117, Issue 49
  • DOI: 10.1021/jp407595u

Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures
journal, April 2012

  • Razorenov, S. V.; Kanel’, G. I.; Garkushin, G. V.
  • Physics of the Solid State, Vol. 54, Issue 4
  • DOI: 10.1134/S1063783412040233

Elastic Precursor Decay in Tantalum
journal, April 1971

  • Gillis, Peter P.; Hoge, Kenneth G.; Wasley, Richard J.
  • Journal of Applied Physics, Vol. 42, Issue 5
  • DOI: 10.1063/1.1660508

Dynamic yielding of single crystal Ta at strain rates of ∼5 × 10 5 /s
journal, April 2011

  • Asay, J. R.; Vogler, T. J.; Ao, T.
  • Journal of Applied Physics, Vol. 109, Issue 7
  • DOI: 10.1063/1.3562178

Preheating study by reflectivity measurements in laser-driven shocks
journal, June 1998

  • Benuzzi, A.; Koenig, M.; Faral, B.
  • Physics of Plasmas, Vol. 5, Issue 6
  • DOI: 10.1063/1.872917

Ramp wave Stress-Density Measurements of ta and w
conference, January 2008

  • Eggert, J.; Bastea, M.; Reisman, D. B.
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2007: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.2832929

Grain-Size-Independent Plastic Flow at Ultrahigh Pressures and Strain Rates
journal, February 2015


Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum
journal, November 2014

  • Davis, Jean-Paul; Brown, Justin L.; Knudson, Marcus D.
  • Journal of Applied Physics, Vol. 116, Issue 20, Article No. 204903
  • DOI: 10.1063/1.4902863

Prospects for achieving high dynamic compression with low energy
journal, September 2012

  • Armstrong, Michael R.; Crowhurst, Jonathan C.; Bastea, Sorin
  • Applied Physics Letters, Vol. 101, Issue 10
  • DOI: 10.1063/1.4751107

Determination and interpretation of statistics of spatially resolved waveforms in spalled tantalum from 7 to 13GPa
journal, April 2009

  • Furnish, Michael D.; Chhabildas, Lalit C.; Reinhart, William D.
  • International Journal of Plasticity, Vol. 25, Issue 4
  • DOI: 10.1016/j.ijplas.2008.12.007

Strength of Shock-Loaded Single-Crystal Tantalum [100] Determined using In Situ Broadband X-Ray Laue Diffraction
journal, March 2013


Shock‐Compression Behavior of Tantalum at 25° and 900°C
journal, February 1971

  • Rohde, R. W.; Towne, T. L.
  • Journal of Applied Physics, Vol. 42, Issue 2
  • DOI: 10.1063/1.1660115

Single-shot spectral interferometry with chirped pulses
journal, January 2001

  • Geindre, J.-P.; Audebert, P.; Rebibo, S.
  • Optics Letters, Vol. 26, Issue 20, p. 1612-1614
  • DOI: 10.1364/OL.26.001612

Inverse Hall–Petch relationship in nanocrystalline tantalum
journal, September 2013


The role of cold work on the shock response of tantalum
journal, June 2013

  • Millett, J. C. F.; Whiteman, G.; Park, N. T.
  • Journal of Applied Physics, Vol. 113, Issue 23
  • DOI: 10.1063/1.4810896

Ultrafast observation of shocked states in a precompressed material
journal, July 2010

  • Armstrong, Michael R.; Crowhurst, Jonathan C.; Bastea, Sorin
  • Journal of Applied Physics, Vol. 108, Issue 2
  • DOI: 10.1063/1.3460801

Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry
journal, August 2007

  • Bolme, C. A.; McGrane, S. D.; Moore, D. S.
  • Journal of Applied Physics, Vol. 102, Issue 3
  • DOI: 10.1063/1.2767376

Ramp compression of tantalum to 330 GPa
journal, August 2015


Recent Advances in the Fabrication of Very Thick, Multistepped Iron and Tantalum Films for EOS Targets
journal, April 2013

  • Mirkarimi, P. B.; Bettencourt, K. A.; Teslich, N. E.
  • Fusion Science and Technology, Vol. 63, Issue 2
  • DOI: 10.13182/FST13-TFM20-34

Single-shot supercontinuum spectral interferometry
journal, November 2002

  • Kim, K. Y.; Alexeev, I.; Milchberg, H. M.
  • Applied Physics Letters, Vol. 81, Issue 22
  • DOI: 10.1063/1.1524701

Works referencing / citing this record:

Ultrafast shock synthesis of nanocarbon from a liquid precursor
journal, January 2020

  • Armstrong, Michael R.; Lindsey, Rebecca K.; Goldman, Nir
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-019-14034-z

A benchtop shock physics laboratory: Ultrafast laser driven shock spectroscopy and interferometry methods
journal, June 2019

  • Powell, M. S.; Bowlan, P. R.; Son, S. F.
  • Review of Scientific Instruments, Vol. 90, Issue 6
  • DOI: 10.1063/1.5092244

Understanding and predicting damage and failure at grain boundaries in BCC Ta
journal, October 2019

  • Chen, J.; Hahn, E. N.; Dongare, A. M.
  • Journal of Applied Physics, Vol. 126, Issue 16
  • DOI: 10.1063/1.5111837

Improved embedded-atom model potentials of Pb at high pressure: application to investigations of plasticity and phase transition under extreme conditions
journal, November 2018

  • Wang, Kun; Zhu, Wenjun; Xiang, Meizhen
  • Modelling and Simulation in Materials Science and Engineering, Vol. 27, Issue 1
  • DOI: 10.1088/1361-651x/aaea55

Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Ultrafast shock synthesis of nanocarbon from a liquid precursor
journal, January 2020

  • Armstrong, Michael R.; Lindsey, Rebecca K.; Goldman, Nir
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-019-14034-z