DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

Abstract

In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1];  [3]
  1. Michigan State Univ., East Lansing, MI (United States). Dept. of Computational Mathematics, Science and Engineering; Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering
  2. Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering
  3. Michigan State Univ., East Lansing, MI (United States). Dept. of Computational Mathematics, Science and Engineering; Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering; Michigan State Univ., East Lansing, MI (United States). Dept. of Mathematics
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1540130
Alternate Identifier(s):
OSTI ID: 1420639
Grant/Contract Number:  
SC0001939
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 11; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Physics

Citation Formats

Fu, Yangyang, Parsey, Guy M., Verboncoeur, John P., and Christlieb, Andrew J. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges. United States: N. p., 2017. Web. doi:10.1063/1.5005112.
Fu, Yangyang, Parsey, Guy M., Verboncoeur, John P., & Christlieb, Andrew J. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges. United States. https://doi.org/10.1063/1.5005112
Fu, Yangyang, Parsey, Guy M., Verboncoeur, John P., and Christlieb, Andrew J. Tue . "Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges". United States. https://doi.org/10.1063/1.5005112. https://www.osti.gov/servlets/purl/1540130.
@article{osti_1540130,
title = {Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges},
author = {Fu, Yangyang and Parsey, Guy M. and Verboncoeur, John P. and Christlieb, Andrew J.},
abstractNote = {In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.},
doi = {10.1063/1.5005112},
journal = {Physics of Plasmas},
number = 11,
volume = 24,
place = {United States},
year = {Tue Nov 21 00:00:00 EST 2017},
month = {Tue Nov 21 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Validity of the similarity law for the glow discharges in non-plane-parallel gaps
journal, October 2014


Effect of distribution of electric field on low-pressure gas breakdown
journal, February 2017

  • Fu, Yangyang; Yang, Shuo; Zou, Xiaobing
  • Physics of Plasmas, Vol. 24, Issue 2
  • DOI: 10.1063/1.4976848

Global Model of He/O 2 and Ar/O 2 Atmospheric Pressure Glow Discharges
journal, August 2008

  • Park, Ganyoung; Lee, Hyunwoo; Kim, Gyoocheon
  • Plasma Processes and Polymers, Vol. 5, Issue 6
  • DOI: 10.1002/ppap.200800019

Investigation on the similarity law of low-pressure glow discharges based on the light intensity distributions in geometrically similar gaps
journal, August 2017

  • Fu, Yangyang; Wang, Xinxin; Zou, Xiaobing
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4997425

Microplasmas for analytical spectrometry
journal, January 2003

  • Franzke, Joachim; Kunze, Kerstin; Miclea, Manuela
  • Journal of Analytical Atomic Spectrometry, Vol. 18, Issue 7
  • DOI: 10.1039/b300193h

Influence of Forbidden Processes on Similarity Law in Argon Glow Discharge at Low Pressure
journal, July 2014


Numerical Model of an Argon Atmospheric Pressure RF Discharge
journal, October 2008

  • Balcon, N.; Hagelaar, G.; Boeuf, J. P.
  • IEEE Transactions on Plasma Science, Vol. 36, Issue 5
  • DOI: 10.1109/TPS.2008.2003135

Similarity law for rf breakdown
journal, March 2008


Research on Similarity Law of Glow Discharge in Argon at Low Pressure by Numerical Simulation
journal, June 2014

  • Fu, Yangyang; Luo, Haiyun; Zou, Xiaobin
  • IEEE Transactions on Plasma Science, Vol. 42, Issue 6
  • DOI: 10.1109/TPS.2014.2319106

Studies of the Properties of the Hollow Cathode Glow Discharge in Helium and Neon
journal, October 1964

  • Sturges, D. J.; Oskam, H. J.
  • Journal of Applied Physics, Vol. 35, Issue 10
  • DOI: 10.1063/1.1713124

Predicted properties of microhollow cathode discharges in xenon
journal, January 2005

  • Boeuf, J. P.; Pitchford, L. C.; Schoenbach, K. H.
  • Applied Physics Letters, Vol. 86, Issue 7
  • DOI: 10.1063/1.1862781

Effect of microwave frequency on breakdown and electron energy distribution function using a global model
journal, October 2008

  • Nam, Sang Ki; Verboncoeur, John P.
  • Applied Physics Letters, Vol. 93, Issue 15
  • DOI: 10.1063/1.3003879

Xenon excimer emission from pulsed microhollow cathode discharges
journal, August 2001

  • Moselhy, M.; Shi, W.; Stark, R. H.
  • Applied Physics Letters, Vol. 79, Issue 9
  • DOI: 10.1063/1.1397760

Ionized Gases
journal, October 1965


Similarity of gas discharge in low-pressure argon gaps between two plane-parallel electrodes
journal, July 2016


Determination of the Maximum Temperature at the Center of an Optically Thick Laser-Induced Plasma Using Self-Reversed Spectral Lines
journal, September 2004


Intersection of Paschen's curves for argon
journal, September 2016

  • Fu, Yangyang; Yang, Shuo; Zou, Xiaobing
  • Physics of Plasmas, Vol. 23, Issue 9
  • DOI: 10.1063/1.4962673

High-Pressure Microdischarges: Sources of Ultraviolet Radiation
journal, June 2012


Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration
journal, January 2014


Scaling and the design of miniaturized chemical-analysis systems
journal, July 2006

  • Janasek, Dirk; Franzke, Joachim; Manz, Andreas
  • Nature, Vol. 442, Issue 7101
  • DOI: 10.1038/nature05059

Global model for high power microwave breakdown at high pressure in air
journal, April 2009


Modeling of microwave-induced plasma in argon at atmospheric pressure
journal, May 2012


Measurements and modelling of axial emission profiles in abnormal glow discharges in argon: heavy-particle processes
journal, October 2003


Effect of electron energy distribution function on the global model for high power microwave breakdown at high pressures
journal, June 2008

  • Nam, Sang Ki; Verboncoeur, John P.
  • Applied Physics Letters, Vol. 92, Issue 23
  • DOI: 10.1063/1.2942382

Scaling laws for dielectric window breakdown in vacuum and collisional regimes
journal, December 2006

  • Lau, Y. Y.; Verboncoeur, J. P.; Kim, H. C.
  • Applied Physics Letters, Vol. 89, Issue 26
  • DOI: 10.1063/1.2425025

The Validity of the Similarity Law for the Electrical Breakdown of $\hbox{SF}_{6}$ Gas
journal, February 2007

  • Osmokrovic, Predrag; Zivic, Tamara; Loncar, Boris
  • IEEE Transactions on Plasma Science, Vol. 35, Issue 1
  • DOI: 10.1109/TPS.2006.889293

Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure
journal, February 2015

  • Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907660

<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-01-01">January 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mesyats, Gennadii A.</span> </li> <li> Physics-Uspekhi, Vol. 49, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1070/PU2006v049n10ABEH006118" class="text-muted" target="_blank" rel="noopener noreferrer">10.1070/PU2006v049n10ABEH006118<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.7498/aps.62.205209" target="_blank" rel="noopener noreferrer" class="name">Preliminary study on similarity of glow discharges in scale-down gaps<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-01-01">January 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Fu Yang-Yang, </span> </li> <li> Acta Physica Sinica, Vol. 62, Issue 20</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.7498/aps.62.205209" class="text-muted" target="_blank" rel="noopener noreferrer">10.7498/aps.62.205209<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.2748314" target="_blank" rel="noopener noreferrer" class="name">Xenon excimer emission from pulsed high-pressure capillary microdischarges<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-06-11">June 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Lee, Byung-Joon; Rahaman, Hasibur; Petzenhauser, Isfried</span> </li> <li> Applied Physics Letters, Vol. 90, Issue 24</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.2748314" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.2748314<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0963-0252/19/2/025018" target="_blank" rel="noopener noreferrer" class="name">Global model of low-temperature atmospheric-pressure He + H <sub>2</sub> O plasmas<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2010-03-18">March 2010</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Liu, D. X.; Bruggeman, P.; Iza, F.</span> </li> <li> Plasma Sources Science and Technology, Vol. 19, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0963-0252/19/2/025018" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0963-0252/19/2/025018<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s00216-009-2799-4" target="_blank" rel="noopener noreferrer" class="name">The micro-discharge family (dark, corona, and glow-discharge) for analytical applications realized by dielectric barriers<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-05-12">May 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Franzke, J.</span> </li> <li> Analytical and Bioanalytical Chemistry, Vol. 395, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s00216-009-2799-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s00216-009-2799-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/andp.18892730505" target="_blank" rel="noopener noreferrer" class="name">Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1889-01-01">January 1889</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Paschen, Friedrich</span> </li> <li> Annalen der Physik, Vol. 273, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/andp.18892730505" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/andp.18892730505<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1116/1.579494" target="_blank" rel="noopener noreferrer" class="name">Spatially averaged (global) model of time modulated high density argon plasmas<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1995-09-01">September 1995</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ashida, Sumio; Lee, C.; Lieberman, M. A.</span> </li> <li> Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 13, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1116/1.579494" class="text-muted" target="_blank" rel="noopener noreferrer">10.1116/1.579494<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0022-3727/36/6/201" target="_blank" rel="noopener noreferrer" class="name">Plasma display panels: physics, recent developments and key issues<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2003-02-27">February 2003</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Boeuf, J. P.</span> </li> <li> Journal of Physics D: Applied Physics, Vol. 36, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0022-3727/36/6/201" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0022-3727/36/6/201<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.4869021" target="_blank" rel="noopener noreferrer" class="name">Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB <sub>6</sub> film on the MgO protective layer<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-03-01">March 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Deng, Jiang; Zeng, Baoqing; Wang, Xiaoju</span> </li> <li> AIP Advances, Vol. 4, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.4869021" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.4869021<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1259/jrs.1915.0049" target="_blank" rel="noopener noreferrer" class="name">Electricity in Gases<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1915-07-01">July 1915</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Townsend, J. S.</span> </li> <li> Journal of the Röntgen Society, Vol. 11, Issue 44</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1259/jrs.1915.0049" class="text-muted" target="_blank" rel="noopener noreferrer">10.1259/jrs.1915.0049<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0963-0252/15/4/012" target="_blank" rel="noopener noreferrer" class="name">Simulation of dc atmospheric pressure argon micro glow-discharge<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-08-04">August 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Farouk, Tanvir; Farouk, Bakhtier; Staack, David</span> </li> <li> Plasma Sources Science and Technology, Vol. 15, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0963-0252/15/4/012" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0963-0252/15/4/012<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s00216-008-2181-y" target="_blank" rel="noopener noreferrer" class="name">Micro-plasma: a novel ionisation source for ion mobility spectrometry<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-05-25">May 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Vautz, Wolfgang; Michels, Antje; Franzke, Joachim</span> </li> <li> Analytical and Bioanalytical Chemistry, Vol. 391, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s00216-008-2181-y" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s00216-008-2181-y<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0963-0252/12/1/302" target="_blank" rel="noopener noreferrer" class="name">Breakdown processes in metal halide lamps<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2002-12-05">December 2002</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Lay, Brian; Moss, Richard S.; Rauf, Shahid</span> </li> <li> Plasma Sources Science and Technology, Vol. 12, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0963-0252/12/1/302" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0963-0252/12/1/302<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (40)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-citations" class="tab-content tab-content-sec osti-curated" data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Works referencing / citing this record:</p> <div class="list"> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.5020097" target="_blank" rel="noopener noreferrer" class="name">Characterizing the dominant ions in low-temperature argon plasmas in the range of 1–800 Torr<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-03-01">March 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Fu, Yangyang; Krek, Janez; Parsey, Guy M.</span> </li> <li> Physics of Plasmas, Vol. 25, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.5020097" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.5020097<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/1361-6463/ab394b" target="_blank" rel="noopener noreferrer" class="name">Study of scaling law for particle-in-cell/Monte Carlo simulation of low-temperature magnetized plasma for electric propulsion<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-08-28">August 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Li, Jian; Wu, Jianjun; Zhang, Yu</span> </li> <li> Journal of Physics D: Applied Physics, Vol. 52, Issue 45</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/1361-6463/ab394b" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/1361-6463/ab394b<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/1361-6595/ab3c82" target="_blank" rel="noopener noreferrer" class="name">Transition of low-temperature plasma similarity laws from low to high ionization degree regimes<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-09-01">September 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Fu, Yangyang; Krek, Janez; Wen, Deqi</span> </li> <li> Plasma Sources Science and Technology, Vol. 28, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/1361-6595/ab3c82" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/1361-6595/ab3c82<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/2516-1067/ab6c84" target="_blank" rel="noopener noreferrer" class="name">Electrical breakdown from macro to micro/nano scales: a tutorial and a review of the state of the art<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2020-02-07">February 2020</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Fu, Yangyang; Zhang, Peng; Verboncoeur, John P.</span> </li> <li> Plasma Research Express, Vol. 2, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/2516-1067/ab6c84" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/2516-1067/ab6c84<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All Cited By</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (4)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted citation-search"> <label for="citation-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="citation-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="citation-search-sort-name"><label for="citation-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="citation-search-sort-date"><label for="citation-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_citations" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1979311-similarity-properties-capacitive-radio-frequency-plasmas-nonlinear-collision-processes" itemprop="url">Similarity properties in capacitive radio frequency plasmas with nonlinear collision processes</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Yang, Dong</span> ; <span class="author">Fu, Yangyang</span> ; <span class="author">Zheng, Bocong</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Plasma Sources Science and Technology</span> </span> </div> <div class="abstract">Abstract Similarity laws (SL) are essential for correlating the characteristics of plasmas at different dimensional scales, which have been validated for radio frequency (rf) discharges at low pressure but under limited conditions. In this work, we evaluate the effects of nonlinear collisions (e.g. stepwise ionization) on the similarity properties in capacitive rf discharges in argon across a wide range of pressure regimes via fully kinetic particle-in-cell simulations. The SL scalings of fundamental discharge parameters, e.g. the electron power absorption and electron energy probability function, are examined with and without nonlinear collisions, respectively. Without the nonlinear collisions, the similarity scalings are<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> found to be rigorously valid. When the nonlinear collisions are considered, the similarity properties in rf discharges still exist approximately, which indicates that the violations caused by the nonlinear collisions are still minor in the studied cases. The reasons for the effectiveness of SL scalings with nonlinear collision processes are also discussed. The results from this study confirmed the validity of similarity transformations with more complex reaction kinetics, which may promote the applicability of the SL scalings for the design and fabrications of plasma devices.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1088/1361-6595/ac2f0a" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1979311" data-product-type="Journal Article" data-product-subtype="AC" >https://doi.org/10.1088/1361-6595/ac2f0a</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/21136929-theoretical-study-plasma-parameters-dependence-gas-temperature-atmospheric-pressure-argon-microwave-discharge" itemprop="url">Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Pencheva, M</span> ; <span class="author">Benova, E</span> ; <span class="author">Zhelyazkov, I</span> <span class="text-muted pubdata"> - AIP Conference Proceedings</span> </span> </div> <div class="abstract">The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1063/1.2909133" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="21136929" data-product-type="Journal Article" data-product-subtype="" >https://doi.org/10.1063/1.2909133</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1236697-one-dimensional-time-dependent-fluid-model-very-high-density-low-pressure-inductively-coupled-plasma" itemprop="url">One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Chaplin, Vernon H.</span> ; <span class="author">Bellan, Paul M.</span> <span class="text-muted pubdata"> - Journal of Applied Physics</span> </span> </div> <div class="abstract">A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak n<sub>e~</sub> > 5x10<sup>19</sup> m<sup>–3</sup>) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D, with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density n<sub>e</sub>(z,t) and temperature T<sub>e</sub>(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated in<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> order to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at p<sub>Ar</sub> = 30-60 mTorr. Lastly, we present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency (RF) antenna.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 4<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1063/1.4938490" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1236697" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1063/1.4938490</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1236697" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1236697" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/22472271-numerical-investigation-effect-driving-voltage-pulse-shapes-characteristics-low-pressure-argon-dielectric-barrier-discharge" itemprop="url">Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Eslami, E., E-mail: eeslami@iust.ac.ir</span> ; <span class="author">Barjasteh, A.</span> ; <span class="author">Morshedian, N.</span> <span class="text-muted pubdata"> - Plasma Physics Reports</span> </span> </div> <div class="abstract">In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1134/S1063780X15060021" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="22472271" data-product-type="Journal Article" data-product-subtype="AC" >https://doi.org/10.1134/S1063780X15060021</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="5" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/22599971-investigation-reaction-mechanisms-generation-loss-oxygen-related-species-atmospheric-pressure-pulsed-dielectric-barrier-discharge-argon-oxygen-mixture" itemprop="url">Investigation on the reaction mechanisms of generation and loss of oxygen-related species in atmospheric-pressure pulsed dielectric barrier discharge in argon/oxygen mixture</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Pan, Jie</span> ; <span class="author">Tan, Zhenyu</span> ; <span class="author">Pan, Guangsheng</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physics of Plasmas</span> </span> </div> <div class="abstract">This work presents a numerical investigation, using a 1-D fluid model, on the generation and loss of oxygen-related species and the spatial-temporal evolutions of the species densities in the atmospheric-pressure pulsed dielectric barrier discharge in the argon/oxygen mixture. The reaction pathways as well as their contributions to the generation and loss of oxygen-related species are given. The considered oxygen-related species include O, O({sup 1}D), O{sub 2}({sup 1}Δ{sub g}), O{sub 3}, O{sup +}, O{sub 2}{sup +}, O{sup −}, O{sub 2}{sup −}, and O{sub 3}{sup −}. The following significant results are obtained. O, O({sup 1}D), O{sub 2}({sup 1}Δ{sub g}), and O{sup −}<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> are produced mainly via the electron impact with O{sub 2}. Ar{sup +} plays an essential role in the generation of O{sup +} and O{sub 2}{sup +}. Almost all of O{sub 3} derives from the reaction O{sub 2} + O{sub 2} + O → O{sub 3} + O{sub 2}. The O{sub 3}-related reactions produce an essential proportion of O{sub 2}{sup −} and O{sub 3}{sup −}. The substantial loss of O{sup −}, O{sub 2}{sup −}, and O{sub 3}{sup −} is induced by their reactions with O{sub 2}{sup +}. Loss of O{sup +}, O, and O({sup 1}D) is mainly due to their reactions with O{sub 2}, loss of O{sub 2}({sup 1}Δ{sub g}) due to O{sub 2}({sup 1}Δ{sub g}) impacts with O{sub 3} as well as the de-excitation reactions between O{sub 2}({sup 1}Δ{sub g}) and e, O{sub 2}, and O, and loss of O{sub 3} due to the reactions between O{sub 3} and other neutral species. In addition, the densities of O{sup +} and O({sup 1}D) present two obvious peaks at the pulse duration, but the densities of O{sub 2}{sup +}, O, O{sub 2}({sup 1}Δ{sub g}), and O{sub 3} are almost unchanged. The densities of negative oxygen ions increase at the pulse duration and then decline. O{sup −} density is obviously large nearby the dielectric surfaces and the densities of O{sub 2}{sup −} and O{sub 3}{sup −} present generally uniform distributions.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1063/1.4960119" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="22599971" data-product-type="Journal Article" data-product-subtype="AC" >https://doi.org/10.1063/1.4960119</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>