DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte

Abstract

Here, cubic anti-perovskites with general formula Li3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely cubic Li3OBr and layered Li7O2Br3, by solid state reaction routes. The results indicate that with the phase fraction of Li7O2Br3 increasing to 44 wt %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li3OBr. Formation energy calculations revealed the meta-stable nature of Li7O2Br3, which supports the great difficulty in producing phase-pure Li7O2Br3 at ambient pressure. Methods of obtaining phase-pure Li7O2Br3 will continue to be explored, including both high pressure and metathesis techniques.

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [1]; ORCiD logo [1];  [1];  [4]
  1. Univ. of Nevada, Las Vegas, NV (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Univ. of Texas at Austin, Austin, TX (United States)
  4. Univ. of Nevada, Las Vegas, NV (United States); South Univ. of Science and Technology of China, Guangdong (China)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Univ. of Nevada, Las Vegas, NV (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1331273
Alternate Identifier(s):
OSTI ID: 1332396; OSTI ID: 1420460
Report Number(s):
LA-UR-16-21222
Journal ID: ISSN 0003-6951; APPLAB
Grant/Contract Number:  
AC52-06NA25396; NA0001982; 0670-3052
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 109; Journal Issue: 10; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; material science; solid electrolyte; lithium ion battery; lithium-rich anti-perovskite; layered structure; ionic conductivity; electrolytes; activation energies; grain boundaries; crystal structure; electolytes

Citation Formats

Zhu, Jinlong, Li, Shuai, Zhang, Yi, Howard, John W., Lu, Xujie, Li, Yutao, Wang, Yonggang, Kumar, Ravhi S., Wang, Liping, and Zhao, Yusheng. Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte. United States: N. p., 2016. Web. doi:10.1063/1.4962437.
Zhu, Jinlong, Li, Shuai, Zhang, Yi, Howard, John W., Lu, Xujie, Li, Yutao, Wang, Yonggang, Kumar, Ravhi S., Wang, Liping, & Zhao, Yusheng. Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte. United States. https://doi.org/10.1063/1.4962437
Zhu, Jinlong, Li, Shuai, Zhang, Yi, Howard, John W., Lu, Xujie, Li, Yutao, Wang, Yonggang, Kumar, Ravhi S., Wang, Liping, and Zhao, Yusheng. Wed . "Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte". United States. https://doi.org/10.1063/1.4962437. https://www.osti.gov/servlets/purl/1331273.
@article{osti_1331273,
title = {Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte},
author = {Zhu, Jinlong and Li, Shuai and Zhang, Yi and Howard, John W. and Lu, Xujie and Li, Yutao and Wang, Yonggang and Kumar, Ravhi S. and Wang, Liping and Zhao, Yusheng},
abstractNote = {Here, cubic anti-perovskites with general formula Li3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely cubic Li3OBr and layered Li7O2Br3, by solid state reaction routes. The results indicate that with the phase fraction of Li7O2Br3 increasing to 44 wt %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li3OBr. Formation energy calculations revealed the meta-stable nature of Li7O2Br3, which supports the great difficulty in producing phase-pure Li7O2Br3 at ambient pressure. Methods of obtaining phase-pure Li7O2Br3 will continue to be explored, including both high pressure and metathesis techniques.},
doi = {10.1063/1.4962437},
journal = {Applied Physics Letters},
number = 10,
volume = 109,
place = {United States},
year = {Wed Sep 07 00:00:00 EDT 2016},
month = {Wed Sep 07 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Fast Na+-ion transport in skeleton structures
journal, February 1976


Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Recent developments in lithium ion batteries
journal, June 2001


Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites
journal, October 2015


Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X= Cl, Br)
journal, January 2016


On the Conductivity Mechanism of Nanocrystalline Ceria
journal, January 2002

  • Kim, Sangtae; Maier, Joachim
  • Journal of The Electrochemical Society, Vol. 149, Issue 10
  • DOI: 10.1149/1.1507597

Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis
journal, January 2001

  • Guo, X.; Maier, J.
  • Journal of The Electrochemical Society, Vol. 148, Issue 3
  • DOI: 10.1149/1.1348267

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12
journal, January 2012

  • Han, Jiantao; Zhu, Jinlong; Li, Yutao
  • Chemical Communications, Vol. 48, Issue 79
  • DOI: 10.1039/c2cc35089k

Issue and challenges facing rechargeable thin film lithium batteries
journal, August 2008


Phase Stability and Transport Mechanisms in Antiperovskite Li 3 OCl and Li 3 OBr Superionic Conductors
journal, November 2013

  • Emly, Alexandra; Kioupakis, Emmanouil; Van der Ven, Anton
  • Chemistry of Materials, Vol. 25, Issue 23
  • DOI: 10.1021/cm4016222

First principles methods using CASTEP
journal, January 2005

  • Clark, Stewart J.; Segall, Matthew D.; Pickard, Chris J.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 220, Issue 5/6
  • DOI: 10.1524/zkri.220.5.567.65075

Structure of Na3OCl
journal, May 1990

  • Hippler, K.; Sitta, S.; Vogt, P.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 46, Issue 5
  • DOI: 10.1107/S010827018900990X

Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites
journal, April 2013


A review of recent developments in membrane separators for rechargeable lithium-ion batteries
journal, January 2014

  • Lee, Hun; Yanilmaz, Meltem; Toprakci, Ozan
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE01432D

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

A review of advanced and practical lithium battery materials
journal, January 2011

  • Marom, Rotem; Amalraj, S. Francis; Leifer, Nicole
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04225k

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Blocking Grain Boundaries in Yttria-Doped and Undoped Ceria Ceramics of High Purity
journal, January 2003


Li-rich anti-perovskite Li 3 OCl films with enhanced ionic conductivity
journal, January 2014

  • Lü, Xujie; Wu, Gang; Howard, John W.
  • Chem. Commun., Vol. 50, Issue 78
  • DOI: 10.1039/C4CC05372A

Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors
journal, February 1978


Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Superionic Conductivity in Lithium-Rich Anti-Perovskites
journal, August 2012

  • Zhao, Yusheng; Daemen, Luke L.
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja305709z

On the Conductivity Mechanism of Nanocrystalline Ceria.
journal, January 2003


Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12.
journal, December 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • ChemInform, Vol. 38, Issue 50
  • DOI: 10.1002/chin.200750009

Works referencing / citing this record:

Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
journal, February 2018


Ion Conductivity Enhancement in Anti-Spinel Li 3 OBr with Intrinsic Vacancies
journal, November 2018

  • Hussain, Fiaz; Li, Pai; Li, Zhenyu
  • Advanced Theory and Simulations, Vol. 2, Issue 3
  • DOI: 10.1002/adts.201800138

Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes
journal, January 2019

  • Kim, Kwangnam; Siegel, Donald J.
  • Journal of Materials Chemistry A, Vol. 7, Issue 7
  • DOI: 10.1039/c8ta10989c

Insights into Grain Boundary in Lithium-Rich Anti-Perovskite as Solid Electrolytes
journal, January 2018

  • Chen, Bingbing; Xu, Chaoqun; Zhou, Jianqiu
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0831816jes