skip to main content


Title: Direct Investigation of Mg Intercalation into the Orthorhombic V 2O 5 Cathode Using Atomic-Resolution Transmission Electron Microscopy [Direct Investigation of Mg intercalation into orthorhombic V 2O 5 cathode using Atomic Resolution Electron Microscopy Methods]

Batteries based on Mg metal anode can promise much higher specific volumetric capacity and energy density compared to Li-ion systems and are, at the same time, safer and more cost-effective. While previous experimental reports have claimed reversible Mg intercalation into beyond Chevrel phase cathodes, they provide limited evidence of true Mg intercalation other than electrochemical data. Transmission electron microscopy techniques provide unique capabilities to directly image Mg intercalation and quantify the redox reaction within the cathode material. Here, we present a systematic study of Mg insertion into orthorhombic V 2O 5, combining aberration-corrected scanning transmission electron microscopy (STEM) imaging, electron energy-loss spectroscopy (EELS), and energy-dispersive X-ray spectroscopy (EDX) analysis. We compare the results from an electrochemically cycled V 2O 5 cathode in a prospective full cell with Mg metal anode with a chemically synthesized MgV 2O 5 sample. Results suggest that the electrochemically cycled orthorhombic V 2O 5 cathode shows a local formation of the theoretically predicted ϵ-Mg0.5V2O5 phase; however, the intercalation levels of Mg are lower than predicted. Lastly, this phase is different from the chemically synthesized sample, which is found to represent the δ-MgV 2O 5 phase.
ORCiD logo [1] ;  [2] ;  [1] ;  [2] ; ORCiD logo [2] ;  [1]
  1. Univ. of Illinois at Chicago, Chicago, IL (United States); Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 5; Journal ID: ISSN 0897-4756
American Chemical Society (ACS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; magnesium; cathode; microscopy
OSTI Identifier: