skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons

Abstract

Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and high I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.

Authors:
ORCiD logo [1];  [2];  [2];  [1]; ORCiD logo [1];  [1];  [3];  [1];  [4];  [4];  [4];  [4];  [4];  [5]; ORCiD logo [5];  [6];  [5];  [7];  [7]; ORCiD logo [2] more »;  [7];  [7]; ORCiD logo [8];  [1] « less
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  2. Swiss Federal Lab. for Materials Science and Technology, Dubendorf (Switzerland)
  3. Univ. of California, Berkeley, CA (United States); Samsung Electronics Co., Gyeonggi-do (Korea, Repubic of)
  4. Univ. of California, Berkeley, CA (United States)
  5. Max Planck Inst. for Polymer Research, Mainz (Germany)
  6. Dresden Univ. of Technology (Germany)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kavli Energy NanoSciences Inst., Berkeley, CA (United States)
  8. Swiss Federal Lab. for Materials Science and Technology, Dubendorf (Switzerland); Univ. of Bern (Switzerland)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1416945
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Llinas, Juan Pablo, Fairbrother, Andrew, Borin Barin, Gabriela, Shi, Wu, Lee, Kyunghoon, Wu, Shuang, Yong Choi, Byung, Braganza, Rohit, Lear, Jordan, Kau, Nicholas, Choi, Wonwoo, Chen, Chen, Pedramrazi, Zahra, Dumslaff, Tim, Narita, Akimitsu, Feng, Xinliang, Müllen, Klaus, Fischer, Felix, Zettl, Alex, Ruffieux, Pascal, Yablonovitch, Eli, Crommie, Michael, Fasel, Roman, and Bokor, Jeffrey. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. United States: N. p., 2017. Web. doi:10.1038/s41467-017-00734-x.
Llinas, Juan Pablo, Fairbrother, Andrew, Borin Barin, Gabriela, Shi, Wu, Lee, Kyunghoon, Wu, Shuang, Yong Choi, Byung, Braganza, Rohit, Lear, Jordan, Kau, Nicholas, Choi, Wonwoo, Chen, Chen, Pedramrazi, Zahra, Dumslaff, Tim, Narita, Akimitsu, Feng, Xinliang, Müllen, Klaus, Fischer, Felix, Zettl, Alex, Ruffieux, Pascal, Yablonovitch, Eli, Crommie, Michael, Fasel, Roman, & Bokor, Jeffrey. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. United States. doi:10.1038/s41467-017-00734-x.
Llinas, Juan Pablo, Fairbrother, Andrew, Borin Barin, Gabriela, Shi, Wu, Lee, Kyunghoon, Wu, Shuang, Yong Choi, Byung, Braganza, Rohit, Lear, Jordan, Kau, Nicholas, Choi, Wonwoo, Chen, Chen, Pedramrazi, Zahra, Dumslaff, Tim, Narita, Akimitsu, Feng, Xinliang, Müllen, Klaus, Fischer, Felix, Zettl, Alex, Ruffieux, Pascal, Yablonovitch, Eli, Crommie, Michael, Fasel, Roman, and Bokor, Jeffrey. Thu . "Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons". United States. doi:10.1038/s41467-017-00734-x. https://www.osti.gov/servlets/purl/1416945.
@article{osti_1416945,
title = {Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons},
author = {Llinas, Juan Pablo and Fairbrother, Andrew and Borin Barin, Gabriela and Shi, Wu and Lee, Kyunghoon and Wu, Shuang and Yong Choi, Byung and Braganza, Rohit and Lear, Jordan and Kau, Nicholas and Choi, Wonwoo and Chen, Chen and Pedramrazi, Zahra and Dumslaff, Tim and Narita, Akimitsu and Feng, Xinliang and Müllen, Klaus and Fischer, Felix and Zettl, Alex and Ruffieux, Pascal and Yablonovitch, Eli and Crommie, Michael and Fasel, Roman and Bokor, Jeffrey},
abstractNote = {Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and high I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.},
doi = {10.1038/s41467-017-00734-x},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 54 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

New advances in nanographene chemistry
journal, January 2015

  • Narita, Akimitsu; Wang, Xiao-Ye; Feng, Xinliang
  • Chemical Society Reviews, Vol. 44, Issue 18
  • DOI: 10.1039/C5CS00183H

Computational Study of Tunneling Transistor Based on Graphene Nanoribbon
journal, February 2009

  • Zhao, Pei; Chauhan, Jyotsna; Guo, Jing
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl803176x

Direct oriented growth of armchair graphene nanoribbons on germanium
journal, August 2015

  • Jacobberger, Robert M.; Kiraly, Brian; Fortin-Deschenes, Matthieu
  • Nature Communications, Vol. 6, Article No. 8006
  • DOI: 10.1038/ncomms9006

Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons
journal, December 2013

  • Narita, Akimitsu; Feng, Xinliang; Hernandez, Yenny
  • Nature Chemistry, Vol. 6, Issue 2
  • DOI: 10.1038/nchem.1819

On-surface synthesis of graphene nanoribbons with zigzag edge topology
journal, March 2016

  • Ruffieux, Pascal; Wang, Shiyong; Yang, Bo
  • Nature, Vol. 531, Issue 7595
  • DOI: 10.1038/nature17151

Schottky-to-Ohmic Crossover in Carbon Nanotube Transistor Contacts
journal, December 2013


On-Surface Synthesis of Atomically Precise Graphene Nanoribbons
journal, February 2016

  • Talirz, Leopold; Ruffieux, Pascal; Fasel, Roman
  • Advanced Materials, Vol. 28, Issue 29
  • DOI: 10.1002/adma.201505738

Raman Fingerprints of Atomically Precise Graphene Nanoribbons
journal, May 2016


Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors
journal, June 2013

  • Chen, Yen-Chia; de Oteyza, Dimas G.; Pedramrazi, Zahra
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn401948e

Ultra-narrow metallic armchair graphene nanoribbons
journal, December 2015

  • Kimouche, Amina; Ervasti, Mikko M.; Drost, Robert
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10177

Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Graphene nanoribbon heterojunctions
journal, September 2014

  • Cai, Jinming; Pignedoli, Carlo A.; Talirz, Leopold
  • Nature Nanotechnology, Vol. 9, Issue 11
  • DOI: 10.1038/nnano.2014.184

Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
journal, February 2008


Length scaling of carbon nanotube transistors
journal, November 2010


The road to carbon nanotube transistors
journal, June 2013


Ultimate device scaling: Intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length
conference, December 2011

  • Luisier, Mathieu; Lundstrom, Mark; Antoniadis, Dimitri A.
  • 2011 IEEE International Electron Devices Meeting (IEDM), 2011 International Electron Devices Meeting
  • DOI: 10.1109/IEDM.2011.6131531

Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
journal, December 1996


Etching and narrowing of graphene from the edges
journal, June 2010

  • Wang, Xinran; Dai, Hongjie
  • Nature Chemistry, Vol. 2, Issue 8, p. 661-665
  • DOI: 10.1038/nchem.719

Sub-10 nm Carbon Nanotube Transistor
journal, January 2012

  • Franklin, Aaron D.; Luisier, Mathieu; Han, Shu-Jen
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203701g

Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions
journal, January 2015


Ambipolar Transport in Solution-Synthesized Graphene Nanoribbons
journal, April 2016


Narrow graphene nanoribbons from carbon nanotubes
journal, April 2009


Schottky-Barrier Carbon Nanotube Field-Effect Transistor Modeling
journal, March 2007

  • Hazeghi, Arash; Krishnamohan, Tejas; Wong, H. -S. Philip
  • IEEE Transactions on Electron Devices, Vol. 54, Issue 3
  • DOI: 10.1109/TED.2006.890384

Vapor-Phase Transport Deposition, Characterization, and Applications of Large Nanographenes
journal, March 2015

  • Abbas, Ahmad N.; Liu, Bilu; Narita, Akimitsu
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja513207e

Theoretical study of the vibrational edge modes in graphene nanoribbons
journal, November 2008


Electronic Structure of Spatially Aligned Graphene Nanoribbons on Au(788)
journal, May 2012


On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons
journal, February 2017


Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-long Chemically Synthesized Graphene Nanoribbons
journal, May 2014

  • Abbas, Ahmad N.; Liu, Gang; Narita, Akimitsu
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja502764d

Ambipolar MoS 2 Thin Flake Transistors
journal, February 2012

  • Zhang, Yijin; Ye, Jianting; Matsuhashi, Yusuke
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl2021575

The Role of Metal−Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors
journal, July 2005

  • Chen, Zhihong; Appenzeller, Joerg; Knoch, Joachim
  • Nano Letters, Vol. 5, Issue 7, p. 1497-1502
  • DOI: 10.1021/nl0508624

Field-Modulated Carrier Transport in Carbon Nanotube Transistors
journal, August 2002


    Works referencing / citing this record:

    On-surface synthesis of a nitrogen-embedded buckybowl with inverse Stone–Thrower–Wales topology
    journal, April 2018

    • Mishra, Shantanu; Krzeszewski, Maciej; Pignedoli, Carlo A.
    • Nature Communications, Vol. 9, Issue 1
    • DOI: 10.1038/s41467-018-04144-5

    On-surface synthesis of a nitrogen-embedded buckybowl with inverse Stone–Thrower–Wales topology
    journal, April 2018

    • Mishra, Shantanu; Krzeszewski, Maciej; Pignedoli, Carlo A.
    • Nature Communications, Vol. 9, Issue 1
    • DOI: 10.1038/s41467-018-04144-5