DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bioinspired Universal Flexible Elastomer‐Based Microchannels

Abstract

Abstract Flexible and stretchable microscale fluidic devices have a broad range of potential applications, ranging from electronic wearable devices for convenient digital lifestyle to biomedical devices. However, simple ways to achieve stable flexible and stretchable fluidic microchannels with dynamic liquid transport have been challenging because every application for elastomeric microchannels is restricted by their complex fabrication process and limited material selection. Here, a universal strategy for building microfluidic devices that possess exceptionally stable and stretching properties is shown. The devices exhibit superior mechanical deformability, including high strain (967%) and recovery ability, where applications as both strain sensor and pressure‐flow regulating device are demonstrated. Various microchannels are combined with organic, inorganic, and metallic materials as stable composite microfluidics. Furthermore, with surface chemical modification these stretchable microfluidic devices can also obtain antifouling property to suit for a broad range of industrial and biomedical applications.

Authors:
 [1];  [2];  [3];  [1];  [3];  [4];  [5];  [6];  [7];  [6];  [8];  [9]
  1. Bionic and Soft Matter Research Institute College of Physical Science and Technology Xiamen University 361005 Xiamen China
  2. Department of Mechanical and Electrical Engineering Xiamen University 361005 Xiamen China
  3. College of Chemistry and Chemical Engineering, and Collaborative Innovation Center of Chemistry for Energy Materials, and State Key Laboratory of Physical Chemistry of Solid Surfaces, and Pen‐Tung Sah Institute of Micro‐Nano Science and Technology Xiamen University 361005 Xiamen China
  4. Wyss Institute for Biologically Inspired Engineering Harvard University Cambridge MA 02138 USA
  5. Biomaterials Innovation Research Center Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
  6. Wyss Institute for Biologically Inspired Engineering Harvard University Cambridge MA 02138 USA, Biomaterials Innovation Research Center Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
  7. Department of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
  8. Wyss Institute for Biologically Inspired Engineering Harvard University Cambridge MA 02138 USA, Department of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
  9. Bionic and Soft Matter Research Institute College of Physical Science and Technology Xiamen University 361005 Xiamen China, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center of Chemistry for Energy Materials, and State Key Laboratory of Physical Chemistry of Solid Surfaces, and Pen‐Tung Sah Institute of Micro‐Nano Science and Technology Xiamen University 361005 Xiamen China
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1416642
Grant/Contract Number:  
DE‐AR0000326; DE‐SC0005247
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Small
Additional Journal Information:
Journal Name: Small Journal Volume: 14 Journal Issue: 18; Journal ID: ISSN 1613-6810
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Wu, Feng, Chen, Songyue, Chen, Baiyi, Wang, Miao, Min, Lingli, Alvarenga, Jack, Ju, Jie, Khademhosseini, Ali, Yao, Yuxing, Zhang, Yu Shrike, Aizenberg, Joanna, and Hou, Xu. Bioinspired Universal Flexible Elastomer‐Based Microchannels. Germany: N. p., 2018. Web. doi:10.1002/smll.201702170.
Wu, Feng, Chen, Songyue, Chen, Baiyi, Wang, Miao, Min, Lingli, Alvarenga, Jack, Ju, Jie, Khademhosseini, Ali, Yao, Yuxing, Zhang, Yu Shrike, Aizenberg, Joanna, & Hou, Xu. Bioinspired Universal Flexible Elastomer‐Based Microchannels. Germany. https://doi.org/10.1002/smll.201702170
Wu, Feng, Chen, Songyue, Chen, Baiyi, Wang, Miao, Min, Lingli, Alvarenga, Jack, Ju, Jie, Khademhosseini, Ali, Yao, Yuxing, Zhang, Yu Shrike, Aizenberg, Joanna, and Hou, Xu. Thu . "Bioinspired Universal Flexible Elastomer‐Based Microchannels". Germany. https://doi.org/10.1002/smll.201702170.
@article{osti_1416642,
title = {Bioinspired Universal Flexible Elastomer‐Based Microchannels},
author = {Wu, Feng and Chen, Songyue and Chen, Baiyi and Wang, Miao and Min, Lingli and Alvarenga, Jack and Ju, Jie and Khademhosseini, Ali and Yao, Yuxing and Zhang, Yu Shrike and Aizenberg, Joanna and Hou, Xu},
abstractNote = {Abstract Flexible and stretchable microscale fluidic devices have a broad range of potential applications, ranging from electronic wearable devices for convenient digital lifestyle to biomedical devices. However, simple ways to achieve stable flexible and stretchable fluidic microchannels with dynamic liquid transport have been challenging because every application for elastomeric microchannels is restricted by their complex fabrication process and limited material selection. Here, a universal strategy for building microfluidic devices that possess exceptionally stable and stretching properties is shown. The devices exhibit superior mechanical deformability, including high strain (967%) and recovery ability, where applications as both strain sensor and pressure‐flow regulating device are demonstrated. Various microchannels are combined with organic, inorganic, and metallic materials as stable composite microfluidics. Furthermore, with surface chemical modification these stretchable microfluidic devices can also obtain antifouling property to suit for a broad range of industrial and biomedical applications.},
doi = {10.1002/smll.201702170},
journal = {Small},
number = 18,
volume = 14,
place = {Germany},
year = {Thu Jan 11 00:00:00 EST 2018},
month = {Thu Jan 11 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/smll.201702170

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Fabrication of microfluidic systems in poly(dimethylsiloxane)
journal, January 2000


A Strategy for the Construction of Controlled, Three-Dimensional, Multilayered, Tissue-Like Structures
journal, August 2012

  • Gong, Peiyuan; Zheng, Wenfu; Huang, Zhuo
  • Advanced Functional Materials, Vol. 23, Issue 1
  • DOI: 10.1002/adfm.201201275

Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin
journal, April 2014


A Strategy for Depositing Different Types of Cells in Three Dimensions to Mimic Tubular Structures in Tissues
journal, January 2012


An ultra-lightweight design for imperceptible plastic electronics
journal, July 2013

  • Kaltenbrunner, Martin; Sekitani, Tsuyoshi; Reeder, Jonathan
  • Nature, Vol. 499, Issue 7459
  • DOI: 10.1038/nature12314

Soft Stylus Probes for Scanning Electrochemical Microscopy
journal, August 2009

  • Cortés-Salazar, Fernando; Träuble, Markus; Li, Fei
  • Analytical Chemistry, Vol. 81, Issue 16
  • DOI: 10.1021/ac900887u

Tumour-on-a-chip provides an optical window into nanoparticle tissue transport
journal, October 2013

  • Albanese, Alexandre; Lam, Alan K.; Sykes, Edward A.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3718

Stretchable silicon nanoribbon electronics for skin prosthesis
journal, December 2014

  • Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6747

Pursuing prosthetic electronic skin
journal, July 2016

  • Chortos, Alex; Liu, Jia; Bao, Zhenan
  • Nature Materials, Vol. 15, Issue 9
  • DOI: 10.1038/nmat4671

The pressure drop along rectangular microchannels containing bubbles
journal, January 2007

  • Fuerstman, Michael J.; Lai, Ann; Thurlow, Meghan E.
  • Lab on a Chip, Vol. 7, Issue 11
  • DOI: 10.1039/b706549c

Interplay between materials and microfluidics
journal, April 2017

  • Hou, Xu; Zhang, Yu Shrike; Santiago, Grissel Trujillo-de
  • Nature Reviews Materials, Vol. 2, Issue 5
  • DOI: 10.1038/natrevmats.2017.16

Soft Matter-Regulated Active Nanovalves Locally Self-Assembled in Femtoliter Nanofluidic Channels
journal, January 2016

  • Xu, Yan; Shinomiya, Misato; Harada, Atsushi
  • Advanced Materials, Vol. 28, Issue 11
  • DOI: 10.1002/adma.201505132

Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage
journal, January 2011


In-Plane Deformation Mechanics for Highly Stretchable Electronics
journal, December 2016


Omnidirectional Printing of 3D Microvascular Networks
journal, March 2011

  • Wu, Willie; DeConinck, Adam; Lewis, Jennifer A.
  • Advanced Materials, Vol. 23, Issue 24
  • DOI: 10.1002/adma.201004625

Microstructure fabrication with a CO 2 laser system
journal, October 2003

  • Snakenborg, Detlef; Klank, Henning; Kutter, Jörg P.
  • Journal of Micromechanics and Microengineering, Vol. 14, Issue 2
  • DOI: 10.1088/0960-1317/14/2/003

Analog-to-digital drug screening
journal, February 2012

  • Wootton, Robert C. R.; deMello, Andrew J.
  • Nature, Vol. 483, Issue 7387
  • DOI: 10.1038/483043a

Bioinspired Multicompartmental Microfibers from Microfluidics
journal, June 2014


Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures
journal, June 2016

  • Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12028

Wearable and Washable Conductors for Active Textiles
journal, July 2017

  • Le Floch, Paul; Yao, Xi; Liu, Qihan
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 30
  • DOI: 10.1021/acsami.7b07361

Fabrication of Flexible Neural Probes With Built-In Microfluidic Channels by Thermal Bonding of Parylene
journal, January 2006

  • Ziegler, Dominik; Suzuki, Takafumi; Takeuchi, Shoji
  • Journal of Microelectromechanical Systems, Vol. 15, Issue 6
  • DOI: 10.1109/JMEMS.2006.879681

Microfluidic technologies for accelerating the clinical translation of nanoparticles
journal, October 2012

  • Valencia, Pedro M.; Farokhzad, Omid C.; Karnik, Rohit
  • Nature Nanotechnology, Vol. 7, Issue 10
  • DOI: 10.1038/nnano.2012.168

Microfluidics-Based in Vivo Mimetic Systems for the Study of Cellular Biology
journal, February 2014

  • Kim, Donghyuk; Wu, Xiaojie; Young, Ashlyn T.
  • Accounts of Chemical Research, Vol. 47, Issue 4
  • DOI: 10.1021/ar4002608

Oscillatory flow in microchannels
journal, June 2004


Embedded Template-Assisted Fabrication of Complex Microchannels in PDMS and Design of a Microfluidic Adhesive
journal, November 2006

  • Verma, Mohan K. S.; Majumder, Abhijit; Ghatak, Animangsu
  • Langmuir, Vol. 22, Issue 24
  • DOI: 10.1021/la062516n

Go with the microflow
journal, August 2005


Stretchable Microfluidic Radiofrequency Antennas
journal, April 2010

  • Kubo, Masahiro; Li, Xiaofeng; Kim, Choongik
  • Advanced Materials, Vol. 22, Issue 25, p. 2749-2752
  • DOI: 10.1002/adma.200904201

Microfluidics: reframing biological enquiry
journal, August 2015

  • Duncombe, Todd A.; Tentori, Augusto M.; Herr, Amy E.
  • Nature Reviews Molecular Cell Biology, Vol. 16, Issue 9
  • DOI: 10.1038/nrm4041

Whole-Teflon microfluidic chips
journal, May 2011

  • Ren, K.; Dai, W.; Zhou, J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 20
  • DOI: 10.1073/pnas.1100356108

When Microfluidic Devices Go Bad
journal, November 2005

  • Mukhopadhyay, Rajendrani
  • Analytical Chemistry, Vol. 77, Issue 21
  • DOI: 10.1021/ac053496h

Biological implications of polydimethylsiloxane-based microfluidic cell culture
journal, January 2009

  • Regehr, Keil J.; Domenech, Maribella; Koepsel, Justin T.
  • Lab on a Chip, Vol. 9, Issue 15
  • DOI: 10.1039/b903043c

New Peptidomimetic Polymers for Antifouling Surfaces
journal, June 2005

  • Statz, Andrea R.; Meagher, Robert J.; Barron, Annelise E.
  • Journal of the American Chemical Society, Vol. 127, Issue 22
  • DOI: 10.1021/ja0522534

Recent Developments in Microfluidics for Cell Studies
journal, February 2014


Supercritical microfluidics: Opportunities in flow-through chemistry and materials science
journal, June 2012


The origins and the future of microfluidics
journal, July 2006


Camouflage and Display for Soft Machines
journal, August 2012

  • Morin, S. A.; Shepherd, R. F.; Kwok, S. W.
  • Science, Vol. 337, Issue 6096, p. 828-832
  • DOI: 10.1126/science.1222149

Self-Adjusting, Polymeric Multilayered Roll that can Keep the Shapes of the Blood Vessel Scaffolds during Biodegradation
journal, May 2017


Soft lithography for micro- and nanoscale patterning
journal, February 2010


Advances in engineering hydrogels
journal, May 2017


The present and future role of microfluidics in biomedical research
journal, March 2014

  • Sackmann, Eric K.; Fulton, Anna L.; Beebe, David J.
  • Nature, Vol. 507, Issue 7491
  • DOI: 10.1038/nature13118

A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle
journal, March 2017

  • Xiao, Shuo; Coppeta, Jonathan R.; Rogers, Hunter B.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14584

Polyimide-based microfluidic devices
journal, January 2001

  • Metz, Stefan; Holzer, Raphael; Renaud, Philippe
  • Lab on a Chip, Vol. 1, Issue 1
  • DOI: 10.1039/b103896f

A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture
journal, January 2013

  • Wagner, Ilka; Materne, Eva-Maria; Brincker, Sven
  • Lab on a Chip, Vol. 13, Issue 18
  • DOI: 10.1039/c3lc50234a

On the Physical Equilibrium of Small Blood Vessels
journal, January 1951


Enhancing flow boiling and antifouling with nanometer titanium dioxide coating surfaces
journal, January 2007

  • Liu, Ming-Yan; Wang, Hong; Wang, Yan
  • AIChE Journal, Vol. 53, Issue 5
  • DOI: 10.1002/aic.11150

Developing optofluidic technology through the fusion of microfluidics and optics
journal, July 2006

  • Psaltis, Demetri; Quake, Stephen R.; Yang, Changhuei
  • Nature, Vol. 442, Issue 7101
  • DOI: 10.1038/nature05060

Microfluidics—downsizing large-scale biology
journal, August 2001

  • Mitchell, Peter
  • Nature Biotechnology, Vol. 19, Issue 8
  • DOI: 10.1038/90754

Microfluidic diagnostic technologies for global public health
journal, July 2006

  • Yager, Paul; Edwards, Thayne; Fu, Elain
  • Nature, Vol. 442, Issue 7101, p. 412-418
  • DOI: 10.1038/nature05064

Reactive particle precipitation in liquid microchannel flow
journal, January 2008


Highly deformable liquid-state heterojunction sensors
journal, September 2014

  • Ota, Hiroki; Chen, Kevin; Lin, Yongjing
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6032