DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications

Abstract

Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m–1 K–1 and 11.5 W m–1 K–1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3];  [4]; ORCiD logo [4]; ORCiD logo [1]
  1. The Ohio State Univ., Columbus, OH (United States)
  2. Idaho National Lab. (INL), Idaho Falls, ID (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1415411
Alternate Identifier(s):
OSTI ID: 1576055
Report Number(s):
LA-UR-17-25392
Journal ID: ISSN 0008-6223
Grant/Contract Number:  
AC52-06NA25396; 20150058DR; DENE0000671; EE0007686
Resource Type:
Accepted Manuscript
Journal Name:
Carbon
Additional Journal Information:
Journal Volume: 129; Journal Issue: C; Journal ID: ISSN 0008-6223
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Wang, Yuzhou, Hurley, David H., Luther, Erik Paul, Beaux, II, Miles Frank, Vodnik, Douglas R., Peterson, Reuben James, Bennett, Bryan L., Usov, Igor Olegovich, Yuan, Pengyu, Wang, Xinwei, and Khafizov, Marat. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications. United States: N. p., 2017. Web. doi:10.1016/j.carbon.2017.12.041.
Wang, Yuzhou, Hurley, David H., Luther, Erik Paul, Beaux, II, Miles Frank, Vodnik, Douglas R., Peterson, Reuben James, Bennett, Bryan L., Usov, Igor Olegovich, Yuan, Pengyu, Wang, Xinwei, & Khafizov, Marat. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications. United States. https://doi.org/10.1016/j.carbon.2017.12.041
Wang, Yuzhou, Hurley, David H., Luther, Erik Paul, Beaux, II, Miles Frank, Vodnik, Douglas R., Peterson, Reuben James, Bennett, Bryan L., Usov, Igor Olegovich, Yuan, Pengyu, Wang, Xinwei, and Khafizov, Marat. Mon . "Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications". United States. https://doi.org/10.1016/j.carbon.2017.12.041. https://www.osti.gov/servlets/purl/1415411.
@article{osti_1415411,
title = {Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications},
author = {Wang, Yuzhou and Hurley, David H. and Luther, Erik Paul and Beaux, II, Miles Frank and Vodnik, Douglas R. and Peterson, Reuben James and Bennett, Bryan L. and Usov, Igor Olegovich and Yuan, Pengyu and Wang, Xinwei and Khafizov, Marat},
abstractNote = {Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m–1 K–1 and 11.5 W m–1 K–1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.},
doi = {10.1016/j.carbon.2017.12.041},
journal = {Carbon},
number = C,
volume = 129,
place = {United States},
year = {Mon Dec 11 00:00:00 EST 2017},
month = {Mon Dec 11 00:00:00 EST 2017}
}

Journal Article:

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermal properties of graphene and nanostructured carbon materials
journal, August 2011

  • Balandin, Alexander A.
  • Nature Materials, Vol. 10, Issue 8, p. 569-581
  • DOI: 10.1038/nmat3064

Anisotropic Thermal Conductivity of Pyrolytic Graphite
journal, August 1962


Fluidized bed chemical vapor deposition of pyrolytic carbon – I. Effect of deposition conditions on microstructure
journal, February 2009


Structure of pyrocarbon infiltrated by pulse-CVI
journal, January 1995


Optical properties of pyrolytic carbon deposits deduced from measurements of the extinction angle by polarized light microscopy
journal, January 2003


Fluidized bed chemical vapor deposition of pyrolytic carbon – II. Effect of deposition conditions on anisotropy
journal, January 2009


Anisotropy analysis of ultra-fine grain graphite and pyrolytic carbon
journal, August 2013


Thermal conductivity enhancement of carbon fiber composites
journal, February 2009


Preparation of oriented graphite/polymer composite sheets with high thermal conductivities by tape casting
journal, August 2012


Interpretation of Raman spectra of disordered and amorphous carbon
journal, May 2000


Pyrocarbon and its application to reactor technology
journal, July 1974

  • Nickel, H.
  • Journal of Vacuum Science and Technology, Vol. 11, Issue 4
  • DOI: 10.1116/1.1312736

The DOE advanced gas reactor fuel development and qualification program
journal, September 2010


Properties Influencing High-Temperature Gas-Cooled Reactor Coated Fuel Particle Performance
journal, September 1977


The thermal conductivity of pyrolytic graphite
journal, January 1966


Thermoelectric Properties and Electrical Transport of Graphite Intercalation Compounds
journal, January 2009


Optical characterization of tristructural isotropic fuel particle cross-sections using generalized ellipsometry
journal, June 2006


Microscale thermal characterization at temperatures up to 1000°C by photoreflectance microscopy. Application to the characterization of carbon fibres
journal, May 2005

  • Rochais, D.; Houëdec, H. Le; Enguehard, F.
  • Journal of Physics D: Applied Physics, Vol. 38, Issue 10
  • DOI: 10.1088/0022-3727/38/10/002

Thermal Conductivity of Graphene in Corbino Membrane Geometry
journal, March 2010

  • Faugeras, Clement; Faugeras, Blaise; Orlita, Milan
  • ACS Nano, Vol. 4, Issue 4
  • DOI: 10.1021/nn9016229

Thermal Conductivity of Graphene Laminate
journal, August 2014

  • Malekpour, H.; Chang, K. -H.; Chen, J. -C.
  • Nano Letters, Vol. 14, Issue 9
  • DOI: 10.1021/nl501996v

Thermal conductivity changes in graphites and carbon/carbon fiber materials induced by low neutron damages
journal, September 1994


Thermal conductivity degradation of graphites due to nuetron irradiation at low temperature
journal, September 1995


Thermal characterization of carbon nanotube fiber by time-domain differential Raman
journal, July 2016


Interfacial thermal conductance between few to tens of layered-MoS2 and c-Si: Effect of MoS2 thickness
journal, January 2017


Characterization of the anisotropy of pyrolytic carbon by Raman spectroscopy
journal, March 2010


Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals
journal, January 2007


Thermal Conductivity Imaging of Thermal Barrier Coatings
journal, July 2005

  • Zheng, X.; Cahill, D. G.; Zhao, J. -C.
  • Advanced Engineering Materials, Vol. 7, Issue 7
  • DOI: 10.1002/adem.200500024

Improved apparatus for picosecond pump‐and‐probe optical measurements
journal, August 1996

  • Capinski, William S.; Maris, Humphrey J.
  • Review of Scientific Instruments, Vol. 67, Issue 8
  • DOI: 10.1063/1.1147100

Microscopic thermal characterization of HTR particle layers
journal, November 2008


Measuring local thermal conductivity in polycrystalline diamond with a high resolution photothermal microscope
journal, April 1997

  • Hartmann, J.; Voigt, P.; Reichling, M.
  • Journal of Applied Physics, Vol. 81, Issue 7
  • DOI: 10.1063/1.364329

Invited Article: Micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance
journal, July 2013

  • Wei, Changdong; Zheng, Xuan; Cahill, David G.
  • Review of Scientific Instruments, Vol. 84, Issue 7
  • DOI: 10.1063/1.4815867

Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry
journal, October 2014

  • Feser, Joseph P.; Liu, Jun; Cahill, David G.
  • Review of Scientific Instruments, Vol. 85, Issue 10
  • DOI: 10.1063/1.4897622

Simultaneous microscopic imaging of elastic and thermal anisotropy
journal, June 2005


Measuring the anisotropic thermal diffusivity of silicon nitride grains by thermoreflectance microscopy
journal, June 1999


Detection of thermal waves through optical reflectance
journal, June 1985

  • Rosencwaig, Allan; Opsal, Jon; Smith, W. L.
  • Applied Physics Letters, Vol. 46, Issue 11
  • DOI: 10.1063/1.95794

Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation
journal, November 2014


Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage
journal, May 2015

  • Cheaito, Ramez; Gorham, Caroline S.; Misra, Amit
  • Journal of Materials Research, Vol. 30, Issue 9
  • DOI: 10.1557/jmr.2015.11

Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications
journal, December 2016

  • Khafizov, M.; Chauhan, V.; Wang, Y.
  • Journal of Materials Research, Vol. 32, Issue 1
  • DOI: 10.1557/jmr.2016.421

Local measurement of thermal conductivity and diffusivity
journal, December 2015

  • Hurley, David H.; Schley, Robert S.; Khafizov, Marat
  • Review of Scientific Instruments, Vol. 86, Issue 12
  • DOI: 10.1063/1.4936213

Measurement of optical functions of highly oriented pyrolytic graphite in the visible
journal, August 2007


Analysis of the anisotropy, stoichiometry and polytypes in pyrolytic carbon and silicon carbide coatings
journal, January 2013


Thermal wave propagation in thin films on substrates
journal, November 1995

  • Maznev, A. A.; Hartmann, J.; Reichling, M.
  • Journal of Applied Physics, Vol. 78, Issue 9
  • DOI: 10.1063/1.359702

Photothermal measurement of thermal anisotropy in pyrolytic graphite
journal, May 1996

  • Hartmann, J.; Voigt, P.; Reichling, M.
  • Applied Physics B Laser and Optics, Vol. 62, Issue 5
  • DOI: 10.1007/BF01081049

Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information
journal, July 2005


Photothermal waves in anisotropic media
journal, November 1987

  • Iravani, M. Vaez; Nikoonahad, M.
  • Journal of Applied Physics, Vol. 62, Issue 10
  • DOI: 10.1063/1.339118

Parametric study of thermal interface resistance using laser-based thermal wave imaging
journal, December 2008

  • Hurley, D. H.; Fig, M. K.
  • Journal of Applied Physics, Vol. 104, Issue 12
  • DOI: 10.1063/1.3033163

Measurement of thermal transport using time-resolved thermal wave microscopy
journal, October 2011

  • Khafizov, Marat; Hurley, David H.
  • Journal of Applied Physics, Vol. 110, Issue 8
  • DOI: 10.1063/1.3653829

Thermal properties of graphene: Fundamentals and applications
journal, November 2012

  • Pop, Eric; Varshney, Vikas; Roy, Ajit K.
  • MRS Bulletin, Vol. 37, Issue 12
  • DOI: 10.1557/mrs.2012.203

Thermal conductivity of ultrathin tetrahedral amorphous carbon films
journal, July 2008

  • Balandin, A. A.; Shamsa, M.; Liu, W. L.
  • Applied Physics Letters, Vol. 93, Issue 4
  • DOI: 10.1063/1.2957041

Thermal conductivity of amorphous carbon thin films
journal, December 2000

  • Bullen, Andrew J.; O’Hara, Keith E.; Cahill, David G.
  • Journal of Applied Physics, Vol. 88, Issue 11
  • DOI: 10.1063/1.1314301

Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature
journal, June 2015

  • Renteria, Jackie D.; Ramirez, Sylvester; Malekpour, Hoda
  • Advanced Functional Materials, Vol. 25, Issue 29
  • DOI: 10.1002/adfm.201501429

Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25° to 600°C
journal, September 1993


Raman Spectrum of Graphite
journal, August 1970

  • Tuinstra, F.; Koenig, J. L.
  • The Journal of Chemical Physics, Vol. 53, Issue 3
  • DOI: 10.1063/1.1674108

Raman spectroscopy as a versatile tool for studying the properties of graphene
journal, April 2013


A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra–Koenig law
journal, December 2014


Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies
journal, July 2011

  • Cançado, L. G.; Jorio, A.; Ferreira, E. H. Martins
  • Nano Letters, Vol. 11, Issue 8, p. 3190-3196
  • DOI: 10.1021/nl201432g

Spatial confinement model applied to phonons in disordered graphene-based carbons
journal, August 2016


Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder
journal, September 2010

  • Martins Ferreira, E. H.; Moutinho, Marcus V. O.; Stavale, F.
  • Physical Review B, Vol. 82, Issue 12
  • DOI: 10.1103/PhysRevB.82.125429

Phonon linewidths and electron-phonon coupling in graphite and nanotubes
journal, April 2006


Thermal conductivity of graphite in the basal plane
journal, January 1994


Anomalous Size Dependence of the Thermal Conductivity of Graphene Ribbons
journal, May 2012

  • Nika, Denis L.; Askerov, Artur S.; Balandin, Alexander A.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl301230g

Phonon dispersion of graphite by inelastic x-ray scattering
journal, July 2007


Lattice Dynamics of Pyrolytic Graphite
journal, June 1972


Phonon dynamics in ion-irradiated graphite and GaAs
journal, September 2002


Radiation effects on the D to G Raman intensities of carbon nanotubes
journal, June 2014


Influence of defects and doping on optical phonon lifetime and Raman linewidth in carbon nanotubes
journal, May 2011


Thermal conductivity of graphene and graphite
journal, March 2013


Picosecond optical studies of amorphous diamond and diamondlike carbon: Thermal conductivity and longitudinal sound velocity
journal, September 1994

  • Morath, Christopher J.; Maris, Humphrey J.; Cuomo, Jerome J.
  • Journal of Applied Physics, Vol. 76, Issue 5
  • DOI: 10.1063/1.357560

Works referencing / citing this record:

Simultaneous characterization of cross- and in-plane thermal transport in insulator patterned by directionally aligned nano-channels
journal, January 2020

  • Chauhan, Vinay S.; Abdullaev, Azat; Utegulov, Zhandos
  • AIP Advances, Vol. 10, Issue 1
  • DOI: 10.1063/1.5125415

Impact of irradiation induced dislocation loops on thermal conductivity in ceramics
journal, June 2019

  • Khafizov, Marat; Pakarinen, Janne; He, Lingfeng
  • Journal of the American Ceramic Society, Vol. 102, Issue 12
  • DOI: 10.1111/jace.16616

Thermal Conductivity of HfTe 5 : A Critical Revisit
journal, November 2019

  • Feng, Tianli; Wu, Xuewang; Yang, Xiaolong
  • Advanced Functional Materials, Vol. 30, Issue 5
  • DOI: 10.1002/adfm.201907286

Pyrolytic Carbon Coating Effects on Oxide and Carbide Kernels Intended for Nuclear Fuel Applications
journal, June 2019