DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues

Abstract

Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The point mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both typemore » I and II copper coordination. The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.« less

Authors:
; ; ; ; ORCiD logo;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1618689
Alternate Identifier(s):
OSTI ID: 1415124
Report Number(s):
NREL/JA-2700-70439
Journal ID: ISSN 1754-6834; 243; PII: 925
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Published Article
Journal Name:
Biotechnology for Biofuels
Additional Journal Information:
Journal Name: Biotechnology for Biofuels Journal Volume: 10 Journal Issue: 1; Journal ID: ISSN 1754-6834
Publisher:
Springer Science + Business Media
Country of Publication:
Netherlands
Language:
English
Subject:
09 BIOMASS FUELS; Thermobifida fusca; biofuels; biomass degrading enzymes; LPMO; cellulose; oxidative chemistry

Citation Formats

Kruer-Zerhusen, Nathan, Alahuhta, Markus, Lunin, Vladimir V., Himmel, Michael E., Bomble, Yannick J., and Wilson, David B. Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues. Netherlands: N. p., 2017. Web. doi:10.1186/s13068-017-0925-7.
Kruer-Zerhusen, Nathan, Alahuhta, Markus, Lunin, Vladimir V., Himmel, Michael E., Bomble, Yannick J., & Wilson, David B. Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues. Netherlands. https://doi.org/10.1186/s13068-017-0925-7
Kruer-Zerhusen, Nathan, Alahuhta, Markus, Lunin, Vladimir V., Himmel, Michael E., Bomble, Yannick J., and Wilson, David B. Thu . "Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues". Netherlands. https://doi.org/10.1186/s13068-017-0925-7.
@article{osti_1618689,
title = {Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues},
author = {Kruer-Zerhusen, Nathan and Alahuhta, Markus and Lunin, Vladimir V. and Himmel, Michael E. and Bomble, Yannick J. and Wilson, David B.},
abstractNote = {Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The point mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.},
doi = {10.1186/s13068-017-0925-7},
journal = {Biotechnology for Biofuels},
number = 1,
volume = 10,
place = {Netherlands},
year = {Thu Nov 30 00:00:00 EST 2017},
month = {Thu Nov 30 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1186/s13068-017-0925-7

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: X-ray data collection and  refinement statistics. Statistics for the highest resolution bin are in parenthesis

Save / Share:

Works referenced in this record:

Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism
journal, December 2013

  • Kim, S.; Stahlberg, J.; Sandgren, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 1
  • DOI: 10.1073/pnas.1316609111

On the catalytic mechanisms of lytic polysaccharide monooxygenases
journal, April 2016


Pre-calculated protein structure alignments at the RCSB PDB website: Fig. 1.
journal, October 2010


Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases
journal, February 2016

  • Frandsen, Kristian E. H.; Simmons, Thomas J.; Dupree, Paul
  • Nature Chemical Biology, Vol. 12, Issue 4
  • DOI: 10.1038/nchembio.2029

Applications of computational science for understanding enzymatic deconstruction of cellulose
journal, April 2011

  • Beckham, Gregg T.; Bomble, Yannick J.; Bayer, Edward A.
  • Current Opinion in Biotechnology, Vol. 22, Issue 2
  • DOI: 10.1016/j.copbio.2010.11.005

Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation
journal, November 2015


Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61 Structure and Function of a Large, Enigmatic Family
journal, April 2010

  • Harris, Paul; Welner, Ditte; McFarland, K.
  • Biochemistry, Vol. 49, Issue 15, p. 3305-3316
  • DOI: 10.1021/bi100009p

Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium
journal, March 2013

  • Wu, Miao; Beckham, Gregg T.; Larsson, Anna M.
  • Journal of Biological Chemistry, Vol. 288, Issue 18
  • DOI: 10.1074/jbc.M113.459396

An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides
journal, October 2010

  • Vaaje-Kolstad, Gustav; Westereng, Bjørge; Horn, Svein J.
  • Science, Vol. 330, Issue 6001, p. 219-222
  • DOI: 10.1126/science.1192231

The Fibronectin Type 3-Like Repeat from the Clostridium thermocellum Cellobiohydrolase CbhA Promotes Hydrolysis of Cellulose by Modifying Its Surface
journal, September 2002


Localization of Glucose Oxidase and Catalase Activities in Aspergillus niger
journal, January 1992


Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation
journal, June 2014

  • Arfi, Y.; Shamshoum, M.; Rogachev, I.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 25
  • DOI: 10.1073/pnas.1404148111

Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies
journal, May 1996


Kinetic Studies of Thermobifida fusca Cel9A Active Site Mutant Enzymes
journal, August 2004

  • Zhou, Weilin; Irwin, Diana C.; Escovar-Kousen, Jose
  • Biochemistry, Vol. 43, Issue 30, p. 9655-9663
  • DOI: 10.1021/bi049394n

Extracellular electron transfer systems fuel cellulose oxidative degradation
journal, April 2016


The Slowdown of the Endoglucanase Trichoderma reesei Cel5A-Catalyzed Cellulose Hydrolysis Is Related to Its Initial Activity
journal, November 2014

  • Shu, Zhiyu; Wang, Yefei; An, Liaoyuan
  • Biochemistry, Vol. 53, Issue 48
  • DOI: 10.1021/bi501059n

Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8
journal, January 2008

  • Moser, Felix; Irwin, Diana; Chen, Shaolin
  • Biotechnology and Bioengineering, Vol. 100, Issue 6, p. 1066-1077
  • DOI: 10.1002/bit.21856

A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase
journal, August 2014


Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes
journal, October 2016


Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose
journal, August 2013

  • Payne, Christina M.; Resch, Michael G.; Chen, Liqun
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 36
  • DOI: 10.1073/pnas.1309106110

Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases
journal, December 2011

  • Beeson, William T.; Phillips, Christopher M.; Cate, Jamie H. D.
  • Journal of the American Chemical Society, Vol. 134, Issue 2
  • DOI: 10.1021/ja210657t

Cel48A from Thermobifida fusca : Structure and site directed mutagenesis of key residues : Structure and Mutagenesis of
journal, November 2013

  • Kostylev, Maxim; Alahuhta, Markus; Chen, Mo
  • Biotechnology and Bioengineering, Vol. 111, Issue 4
  • DOI: 10.1002/bit.25139

Accurate bond and angle parameters for X-ray protein structure refinement
journal, July 1991

  • Engh, R. A.; Huber, R.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 47, Issue 4
  • DOI: 10.1107/S0108767391001071

Cleavage of cellulose by a CBM33 protein
journal, August 2011

  • Forsberg, Zarah; Vaaje-Kolstad, Gustav; Westereng, Bjørge
  • Protein Science, Vol. 20, Issue 9
  • DOI: 10.1002/pro.689

The Buccaneer software for automated model building. 1. Tracing protein chains
journal, August 2006


Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases
journal, June 2012

  • Li, Xin; Beeson, William T.; Phillips, Christopher M.
  • Structure, Vol. 20, Issue 6, p. 1051-1061
  • DOI: 10.1016/j.str.2012.04.002

Novel approach to phasing proteins: derivatization by short cryo-soaking with halides
journal, February 2000

  • Dauter, Zbigniew; Dauter, Miroslawa; Rajashankar, K. R.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 56, Issue 2
  • DOI: 10.1107/S0907444999016352

Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content
journal, January 2012

  • Cannella, David; Hsieh, Chia-wen C.; Felby, Claus
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-26

Microbial Cellulose Utilization: Fundamentals and Biotechnology
journal, September 2002

  • Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.
  • Microbiology and Molecular Biology Reviews, Vol. 66, Issue 3, p. 506-577
  • DOI: 10.1128/MMBR.66.3.506-577.2002

MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

Automatic protein structure solution from weak X-ray data
journal, November 2013

  • Skubák, Pavol; Pannu, Navraj S.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3777

The carbohydrate-active enzymes database (CAZy) in 2013
journal, November 2013

  • Lombard, Vincent; Golaconda Ramulu, Hemalatha; Drula, Elodie
  • Nucleic Acids Research, Vol. 42, Issue D1
  • DOI: 10.1093/nar/gkt1178

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Structure and function of the Clostridium thermocellum cellobiohydrolase A X1-module repeat: enhancement through stabilization of the CbhA complex
journal, February 2012

  • Brunecky, Roman; Alahuhta, Markus; Bomble, Yannick J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 3
  • DOI: 10.1107/S0907444912001680

REFMAC 5 for the refinement of macromolecular crystal structures
journal, March 2011

  • Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444911001314

Comparison of the early stages of forced unfolding for fibronectin type III modules
journal, May 2001

  • Craig, D.; Krammer, A.; Schulten, K.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 10
  • DOI: 10.1073/pnas.101582198

Lytic Polysaccharide Monooxygenases in Biomass Conversion
journal, December 2015


PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Crystal Structure and Binding Properties of the Serratia marcescens Chitin-binding Protein CBP21
journal, December 2004

  • Vaaje-Kolstad, G.; Houston, D. R.; Riemen, A. H. K.
  • Journal of Biological Chemistry, Vol. 280, Issue 12
  • DOI: 10.1074/jbc.M407175200

Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases
journal, June 2014

  • Kjaergaard, C. H.; Qayyum, M. F.; Wong, S. D.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 24
  • DOI: 10.1073/pnas.1408115111

Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay
journal, January 2012

  • Kittl, Roman; Kracher, Daniel; Burgstaller, Daniel
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-79

Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa
journal, December 2011

  • Phillips, Christopher M.; Beeson, William T.; Cate, Jamie H.
  • ACS Chemical Biology, Vol. 6, Issue 12, p. 1399-1406
  • DOI: 10.1021/cb200351y

Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases
journal, May 2014

  • Forsberg, Z.; Mackenzie, A. K.; Sorlie, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 23
  • DOI: 10.1073/pnas.1402771111

The Copper Active Site of CBM33 Polysaccharide Oxygenases
journal, April 2013

  • Hemsworth, Glyn R.; Taylor, Edward J.; Kim, Robbert Q.
  • Journal of the American Chemical Society, Vol. 135, Issue 16
  • DOI: 10.1021/ja402106e

Recent insights into copper-containing lytic polysaccharide mono-oxygenases
journal, October 2013

  • Hemsworth, Glyn R.; Davies, Gideon J.; Walton, Paul H.
  • Current Opinion in Structural Biology, Vol. 23, Issue 5, p. 660-668
  • DOI: 10.1016/j.sbi.2013.05.006

Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes
journal, January 2013

  • Levasseur, Anthony; Drula, Elodie; Lombard, Vincent
  • Biotechnology for Biofuels, Vol. 6, Issue 1, Article No. 41
  • DOI: 10.1186/1754-6834-6-41

Comparative Study of Two Chitin-Active and Two Cellulose-Active AA10-Type Lytic Polysaccharide Monooxygenases
journal, March 2014

  • Forsberg, Zarah; Røhr, Åsmund Kjendseth; Mekasha, Sophanit
  • Biochemistry, Vol. 53, Issue 10
  • DOI: 10.1021/bi5000433

Works referencing / citing this record:

Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium
journal, April 2019

  • Russo, D. A.; Zedler, J. A. Z.; Wittmann, D. N.
  • Biotechnology for Biofuels, Vol. 12, Issue 1
  • DOI: 10.1186/s13068-019-1416-9

An actinobacteria lytic polysaccharide monooxygenase acts on both cellulose and xylan to boost biomass saccharification
journal, May 2019

  • Corrêa, Thamy Lívia Ribeiro; Júnior, Atílio Tomazini; Wolf, Lúcia Daniela
  • Biotechnology for Biofuels, Vol. 12, Issue 1
  • DOI: 10.1186/s13068-019-1449-0

Characterization and synergistic action of a tetra‐modular lytic polysaccharide monooxygenase from Bacillus cereus
journal, June 2018

  • Mutahir, Zeeshan; Mekasha, Sophanit; Loose, Jennifer S. M.
  • FEBS Letters, Vol. 592, Issue 15
  • DOI: 10.1002/1873-3468.13189

Complete genome sequence unveiled cellulose degradation enzymes and secondary metabolic potentials in Streptomyces sp. CC0208
journal, December 2018

  • Zhang, Hongyu; Dong, Shirui; Lou, Tingting
  • Journal of Basic Microbiology, Vol. 59, Issue 3
  • DOI: 10.1002/jobm.201800563

Substrate selectivity in starch polysaccharide monooxygenases
journal, June 2019

  • Vu, Van V.; Hangasky, John A.; Detomasi, Tyler C.
  • Journal of Biological Chemistry, Vol. 294, Issue 32
  • DOI: 10.1074/jbc.ra119.009509

Sequence and Structural Analysis of AA9 and AA10 LPMOs: An Insight into the Basis of Substrate Specificity and Regioselectivity
journal, September 2019

  • Zhou, Xiaoli; Qi, Xiaohua; Huang, Hongxia
  • International Journal of Molecular Sciences, Vol. 20, Issue 18
  • DOI: 10.3390/ijms20184594

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.