DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PbS/CdS Core–Shell Quantum Dots Suppress Charge Transfer and Enhance Triplet Transfer

Abstract

Abstract A sub‐monolayer CdS shell on PbS quantum dots (QDs) enhances triplet energy transfer (TET) by suppressing competitive charge transfer from QDs to molecules. The CdS shell increases the linear photon upconversion quantum yield (QY) from 3.5 % for PbS QDs to 5.0 % for PbS/CdS QDs when functionalized with a tetracene acceptor, 5‐CT . While transient absorption spectroscopy reveals that both PbS and PbS/CdS QDs show the formation of the 5‐CT triplet (with rates of 5.91±0.60 ns −1 and 1.03±0.09 ns −1 respectively), ultrafast hole transfer occurs only from PbS QDs to 5‐CT . Although the CdS shell decreases the TET rate, it enhances TET efficiency from 60.3±6.1 % to 71.8±6.2 % by suppressing hole transfer. Furthermore, the CdS shell prolongs the lifetime of the 5‐CT triplet and thus enhances TET from 5‐CT to the rubrene emitter, further bolstering the upconverison QY.

Authors:
 [1];  [2];  [1];  [1];  [1];  [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Department of Chemistry University of California, Riverside 900 University Ave. Riverside CA 92507 USA
  2. Department of Chemistry Emory University Atlanta GA 30322 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1410831
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Name: Angewandte Chemie Journal Volume: 129 Journal Issue: 52; Journal ID: ISSN 0044-8249
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Huang, Zhiyuan, Xu, Zihao, Mahboub, Melika, Li, Xin, Taylor, Jordan W., Harman, W. Hill, Lian, Tianquan, and Tang, Ming Lee. PbS/CdS Core–Shell Quantum Dots Suppress Charge Transfer and Enhance Triplet Transfer. Germany: N. p., 2017. Web. doi:10.1002/ange.201710224.
Huang, Zhiyuan, Xu, Zihao, Mahboub, Melika, Li, Xin, Taylor, Jordan W., Harman, W. Hill, Lian, Tianquan, & Tang, Ming Lee. PbS/CdS Core–Shell Quantum Dots Suppress Charge Transfer and Enhance Triplet Transfer. Germany. https://doi.org/10.1002/ange.201710224
Huang, Zhiyuan, Xu, Zihao, Mahboub, Melika, Li, Xin, Taylor, Jordan W., Harman, W. Hill, Lian, Tianquan, and Tang, Ming Lee. Fri . "PbS/CdS Core–Shell Quantum Dots Suppress Charge Transfer and Enhance Triplet Transfer". Germany. https://doi.org/10.1002/ange.201710224.
@article{osti_1410831,
title = {PbS/CdS Core–Shell Quantum Dots Suppress Charge Transfer and Enhance Triplet Transfer},
author = {Huang, Zhiyuan and Xu, Zihao and Mahboub, Melika and Li, Xin and Taylor, Jordan W. and Harman, W. Hill and Lian, Tianquan and Tang, Ming Lee},
abstractNote = {Abstract A sub‐monolayer CdS shell on PbS quantum dots (QDs) enhances triplet energy transfer (TET) by suppressing competitive charge transfer from QDs to molecules. The CdS shell increases the linear photon upconversion quantum yield (QY) from 3.5 % for PbS QDs to 5.0 % for PbS/CdS QDs when functionalized with a tetracene acceptor, 5‐CT . While transient absorption spectroscopy reveals that both PbS and PbS/CdS QDs show the formation of the 5‐CT triplet (with rates of 5.91±0.60 ns −1 and 1.03±0.09 ns −1 respectively), ultrafast hole transfer occurs only from PbS QDs to 5‐CT . Although the CdS shell decreases the TET rate, it enhances TET efficiency from 60.3±6.1 % to 71.8±6.2 % by suppressing hole transfer. Furthermore, the CdS shell prolongs the lifetime of the 5‐CT triplet and thus enhances TET from 5‐CT to the rubrene emitter, further bolstering the upconverison QY.},
doi = {10.1002/ange.201710224},
journal = {Angewandte Chemie},
number = 52,
volume = 129,
place = {Germany},
year = {Fri Dec 22 00:00:00 EST 2017},
month = {Fri Dec 22 00:00:00 EST 2017}
}

Works referenced in this record:

Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion
journal, January 2012

  • Zhu, Haiming; Lian, Tianquan
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee22679k

Delayed Molecular Triplet Generation from Energized Lead Sulfide Quantum Dots
journal, March 2017

  • Garakyaraghi, Sofia; Mongin, Cédric; Granger, Devin B.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 7
  • DOI: 10.1021/acs.jpclett.7b00546

Colloidal Quantum Dot Solar Cells
journal, June 2015


Complementary Lock-and-Key Ligand Binding of a Triplet Transmitter to a Nanocrystal Photosensitizer
journal, April 2017


Nanocrystal Size and Quantum Yield in the Upconversion of Green to Violet Light with CdSe and Anthracene Derivatives
journal, October 2015


Excited-State Dynamics of Organic Radical Ions in Liquids and in Low-Temperature Matrices
journal, July 2001

  • Brodard, Pierre; Sarbach, Alexandre; Gumy, Jean-Claude
  • The Journal of Physical Chemistry A, Vol. 105, Issue 27
  • DOI: 10.1021/jp010808l

Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution
journal, November 2003

  • Hines, M. A.; Scholes, G. D.
  • Advanced Materials, Vol. 15, Issue 21, p. 1844-1849
  • DOI: 10.1002/adma.200305395

Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell
journal, December 2011


Efficient Infrared-to-Visible Upconversion with Subsolar Irradiance
journal, October 2016


Efficiency of Hole Transfer from Photoexcited Quantum Dots to Covalently Linked Molecular Species
journal, January 2015

  • Ding, Tina X.; Olshansky, Jacob H.; Leone, Stephen R.
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja512278a

Electronic spectra of ion radicals and their molecular orbital interpretation. III. Aromatic hydrocarbons
journal, May 1973

  • Shida, Tadamasa.; Iwata, Suehiro.
  • Journal of the American Chemical Society, Vol. 95, Issue 11
  • DOI: 10.1021/ja00792a005

Observation of the "Dark Exciton" in CdSe Quantum Dots
journal, November 1995


Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals
journal, November 2015


Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer
journal, August 1994

  • Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P.
  • Nature, Vol. 370, Issue 6488
  • DOI: 10.1038/370354a0

Synthesis, properties and perspectives of hybrid nanocrystal structures
journal, January 2006

  • Cozzoli, Pantaleo Davide; Pellegrino, Teresa; Manna, Liberato
  • Chemical Society Reviews, Vol. 35, Issue 11, p. 1195-1208
  • DOI: 10.1039/b517790c

Ultrafast Charge Separation and Recombination Dynamics in Lead Sulfide Quantum Dot–Methylene Blue Complexes Probed by Electron and Hole Intraband Transitions
journal, June 2011

  • Yang, Ye; Rodríguez-Córdoba, William; Lian, Tianquan
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2033348

Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals
journal, October 2014

  • Thompson, Nicholas J.; Wilson, Mark W. B.; Congreve, Daniel N.
  • Nature Materials, Vol. 13, Issue 11
  • DOI: 10.1038/nmat4097

Complementary Lock-and-Key Ligand Binding of a Triplet Transmitter to a Nanocrystal Photosensitizer
journal, April 2017

  • Li, Xin; Fast, Alexander; Huang, Zhiyuan
  • Angewandte Chemie International Edition, Vol. 56, Issue 20
  • DOI: 10.1002/anie.201701929

Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals
journal, May 2007


Triplet Energy Transfer from PbS(Se) Nanocrystals to Rubrene: the Relationship between the Upconversion Quantum Yield and Size
journal, June 2016

  • Mahboub, Melika; Maghsoudiganjeh, Hadi; Pham, Andrew Minh
  • Advanced Functional Materials, Vol. 26, Issue 33
  • DOI: 10.1002/adfm.201505623

Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
journal, June 2013


Direct observation of triplet energy transfer from semiconductor nanocrystals
journal, January 2016


Dimerization of the perylene and tetracene radical cations and electronic absorption spectra of their dimers
journal, June 1971

  • Kimura, Katsumi; Yamazaki, Tomoko; Katsumata, Shunji
  • The Journal of Physical Chemistry, Vol. 75, Issue 12
  • DOI: 10.1021/j100681a002

Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states
journal, August 1996


CdS/ZnS core–shell nanocrystal photosensitizers for visible to UV upconversion
journal, January 2017

  • Gray, Victor; Xia, Pan; Huang, Zhiyuan
  • Chemical Science, Vol. 8, Issue 8
  • DOI: 10.1039/C7SC01610G

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Hybrid Molecule–Nanocrystal Photon Upconversion Across the Visible and Near-Infrared
journal, July 2015


Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells
journal, June 2014

  • Neo, Darren C. J.; Cheng, Cheng; Stranks, Samuel D.
  • Chemistry of Materials, Vol. 26, Issue 13
  • DOI: 10.1021/cm501595u

Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study
journal, February 2011

  • Moreels, Iwan; Justo, Yolanda; De Geyter, Bram
  • ACS Nano, Vol. 5, Issue 3
  • DOI: 10.1021/nn103050w

Distribution of Multiexciton Generation Rates in CdSe and InAs Nanocrystals
journal, December 2008


Ligand enhanced upconversion of near-infrared photons with nanocrystal light absorbers
journal, January 2016

  • Huang, Zhiyuan; Simpson, Duane E.; Mahboub, Melika
  • Chemical Science, Vol. 7, Issue 7
  • DOI: 10.1039/C6SC00257A