DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the parameter dependence of the whistler anisotropy instability

Abstract

Abstract The evolution of the whistler anisotropy instability relevant to whistler‐mode chorus waves in the Earth's inner magnetosphere is studied using kinetic simulations and is compared with satellite observations. The electron distribution is constrained by the whistler anisotropy instability to a marginal stability state and presents an upper bound of electron anisotropy, which agrees with satellite observations. The electron beta β ∥ e separates whistler waves into two groups: (i) quasi‐parallel whistler waves for and (ii) oblique whistler waves close to the resonance cone for . Landau damping is important in the saturation and relaxation stage of the oblique whistler wave growth. The saturated magnetic field energy of whistler waves roughly scales with the electron beta , shown in both simulations and satellite observations. These results suggest the critical role of electron beta β ∥ e in determining the whistler wave properties in the inner magnetosphere.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [1]; ORCiD logo [3]; ORCiD logo [1]
  1. Univ. of California, Los Angeles, CA (United States)
  2. Univ. of California, Los Angeles, CA (United States); Univ. Corp. for Atmospheric Research, Boulder, CO (United States)
  3. Univ. of California, Los Angeles, CA (United States); Boston Univ., Boston, MA (United States)
Publication Date:
Research Org.:
Univ. of California, Los Angeles, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1466261
Alternate Identifier(s):
OSTI ID: 1402343
Grant/Contract Number:  
SC0010578
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Space Physics
Additional Journal Information:
Journal Volume: 122; Journal Issue: 2; Journal ID: ISSN 2169-9380
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Whistler anisotropy instability; Whistler‐mode chorus waves; electron anisotropy; electron beta

Citation Formats

An, Xin, Yue, Chao, Bortnik, Jacob, Decyk, Viktor, Li, Wen, and Thorne, Richard M. On the parameter dependence of the whistler anisotropy instability. United States: N. p., 2017. Web. doi:10.1002/2017JA023895.
An, Xin, Yue, Chao, Bortnik, Jacob, Decyk, Viktor, Li, Wen, & Thorne, Richard M. On the parameter dependence of the whistler anisotropy instability. United States. https://doi.org/10.1002/2017JA023895
An, Xin, Yue, Chao, Bortnik, Jacob, Decyk, Viktor, Li, Wen, and Thorne, Richard M. Sat . "On the parameter dependence of the whistler anisotropy instability". United States. https://doi.org/10.1002/2017JA023895. https://www.osti.gov/servlets/purl/1466261.
@article{osti_1466261,
title = {On the parameter dependence of the whistler anisotropy instability},
author = {An, Xin and Yue, Chao and Bortnik, Jacob and Decyk, Viktor and Li, Wen and Thorne, Richard M.},
abstractNote = {Abstract The evolution of the whistler anisotropy instability relevant to whistler‐mode chorus waves in the Earth's inner magnetosphere is studied using kinetic simulations and is compared with satellite observations. The electron distribution is constrained by the whistler anisotropy instability to a marginal stability state and presents an upper bound of electron anisotropy, which agrees with satellite observations. The electron beta β ∥ e separates whistler waves into two groups: (i) quasi‐parallel whistler waves for and (ii) oblique whistler waves close to the resonance cone for . Landau damping is important in the saturation and relaxation stage of the oblique whistler wave growth. The saturated magnetic field energy of whistler waves roughly scales with the electron beta , shown in both simulations and satellite observations. These results suggest the critical role of electron beta β ∥ e in determining the whistler wave properties in the inner magnetosphere.},
doi = {10.1002/2017JA023895},
journal = {Journal of Geophysical Research. Space Physics},
number = 2,
volume = 122,
place = {United States},
year = {Sat Feb 18 00:00:00 EST 2017},
month = {Sat Feb 18 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Two- and three-dimensional magnetoinductive particle codes with guiding center electron motion
journal, November 1986


Anisotropy in MHD turbulence due to a mean magnetic field
journal, June 1983

  • Shebalin, John V.; Matthaeus, William H.; Montgomery, David
  • Journal of Plasma Physics, Vol. 29, Issue 3
  • DOI: 10.1017/S0022377800000933

Unraveling the excitation mechanisms of highly oblique lower band chorus waves: EXCITATION OF OBLIQUE LOWER BAND CHORUS
journal, September 2016

  • Li, W.; Mourenas, D.; Artemyev, A. V.
  • Geophysical Research Letters, Vol. 43, Issue 17
  • DOI: 10.1002/2016GL070386

A numerical study of chorus generation and the related variation of wave intensity using the DAWN code
journal, May 2014

  • Tao, X.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 5
  • DOI: 10.1002/2014JA019820

LI. The dynamical motions of charged particles
journal, May 1920

  • Darwin, C. G.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 39, Issue 233
  • DOI: 10.1080/14786440508636066

New chorus wave properties near the equator from Van Allen Probes wave observations
journal, May 2016

  • Li, W.; Santolik, O.; Bortnik, J.
  • Geophysical Research Letters, Vol. 43, Issue 10
  • DOI: 10.1002/2016GL068780

Whistler instability: Electron anisotropy upper bound
journal, May 1996

  • Gary, S. Peter; Wang, Joseph
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A5
  • DOI: 10.1029/96JA00323

Generation of whistler mode emissions in the inner magnetosphere: An event study: GENERATION OF WHISTLER WAVES
journal, August 2010

  • Schriver, D.; Ashour-Abdalla, M.; Coroniti, F. V.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A8
  • DOI: 10.1029/2009JA014932

Postmidnight chorus: A substorm phenomenon
journal, January 1974

  • Tsurutani, Bruce T.; Smith, Edward J.
  • Journal of Geophysical Research, Vol. 79, Issue 1
  • DOI: 10.1029/JA079i001p00118

UPIC: A framework for massively parallel particle-in-cell codes
journal, July 2007


Limit on stably trapped particle fluxes
journal, January 1966


Electron temperature anisotropy instabilities: Computer simulations
journal, May 2000

  • Gary, S. Peter; Winske, Dan; Hesse, Michael
  • Journal of Geophysical Research: Space Physics, Vol. 105, Issue A5
  • DOI: 10.1029/1999JA000322

The wave normals of magnetospheric chorus emissions observed on board GEOS 2
journal, January 1984

  • Hayakawa, M.; Yamanaka, Y.; Parrot, M.
  • Journal of Geophysical Research, Vol. 89, Issue A5
  • DOI: 10.1029/JA089iA05p02811

Characteristics of hiss-like and discrete whistler-mode emissions: HISS-LIKE AND DISCRETE WHISTLER WAVES
journal, September 2012

  • Li, W.; Thorne, R. M.; Bortnik, J.
  • Geophysical Research Letters, Vol. 39, Issue 18
  • DOI: 10.1029/2012GL053206

Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies
journal, July 2001

  • Meredith, Nigel P.; Horne, Richard B.; Anderson, Roger R.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A7
  • DOI: 10.1029/2000JA900156

A self-consistent magnetostatic particle code for numerical simulation of plasmas
journal, March 1977


Fundamentals of very low frequency emission generation mechanisms
journal, November 1964


A high-latitude investigation of the natural very-low-frequency electromagnetic radiation known as chorus
journal, January 1963


Banded chorus-A new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3
journal, June 1969


New evidence for generation mechanisms of discrete and hiss-like whistler mode waves: Evidence:whistler-mode waves generation
journal, July 2014

  • Gao, Xinliang; Li, Wen; Thorne, Richard M.
  • Geophysical Research Letters, Vol. 41, Issue 14
  • DOI: 10.1002/2014GL060707

Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS: WHISTLER WAVE PROPAGATION PROPERTIES
journal, April 2013

  • Li, Wen; Bortnik, J.; Thorne, R. M.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 4
  • DOI: 10.1002/jgra.50176

Whistler anisotropy instability at low electron β: Particle-in-cell simulations
journal, August 2011

  • Gary, S. Peter; Liu, Kaijun; Winske, Dan
  • Physics of Plasmas, Vol. 18, Issue 8
  • DOI: 10.1063/1.3610378

VLF emissions associated with enhanced magnetospheric electrons
journal, January 1977


Wave-particle interactions in the equatorial source region of whistler-mode emissions: WAVE-PARTICLE INTERACTIONS
journal, August 2010

  • Santolík, O.; Gurnett, D. A.; Pickett, J. S.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A8
  • DOI: 10.1029/2009JA015218

Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field
journal, January 1966


Evaluation of whistler-mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft: WHISTLER-MODE CHORUS INTENSIFICATION
journal, January 2009

  • Li, W.; Thorne, R. M.; Angelopoulos, V.
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A1
  • DOI: 10.1029/2008JA013554

Triggering process of whistler mode chorus emissions in the magnetosphere: TRIGGERING MECHANISM OF CHORUS EMISSIONS
journal, May 2011

  • Omura, Yoshiharu; Nunn, David
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A5
  • DOI: 10.1029/2010JA016280

Oblique propagation of whistler mode waves in the chorus source region: OBLIQUE CHORUS
journal, December 2009

  • Santolík, O.; Gurnett, D. A.; Pickett, J. S.
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A12
  • DOI: 10.1029/2009JA014586

Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations: FU ET AL.
journal, October 2014

  • Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 10
  • DOI: 10.1002/2014JA020364

The role of hiss in magnetospheric chorus emissions
journal, January 1981


Excitation of banded whistler waves in the magnetosphere: EXCITATION OF BANDED WHISTLERS
journal, July 2011

  • Liu, Kaijun; Gary, S. Peter; Winske, Dan
  • Geophysical Research Letters, Vol. 38, Issue 14
  • DOI: 10.1029/2011GL048375

VLF electromagnetic waves observed onboard GEOS-1
journal, October 1978

  • Cornilleau-Wehrlin, Nicole; Gendrin, Roger; Lefeuvre, Francois
  • Space Science Reviews, Vol. 22, Issue 4
  • DOI: 10.1007/BF00210874

Works referencing / citing this record:

Energy Transport by Whistler Waves Around Dipolarizing Flux Bundles
journal, November 2019

  • Zhang, Xu; Angelopoulos, V.; Artemyev, A. V.
  • Geophysical Research Letters, Vol. 46, Issue 21
  • DOI: 10.1029/2019gl084226

The Effects of Thermal Electrons on Whistler Mode Waves Excited by Anisotropic Hot Electrons: Linear Theory and 2‐D PIC Simulations
journal, July 2019

  • Fan, Kai; Gao, Xinliang; Lu, Quanming
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 7
  • DOI: 10.1029/2019ja026463

Saturation Properties of Whistler Wave Instability in a Plasma With Two Electron Components
journal, July 2019

  • Wu, Yifan; Tao, Xin; Lu, Quanming
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 7
  • DOI: 10.1029/2019ja026752

Periodic Excitation of Chorus and ECH Waves Modulated by Ultralow Frequency Compressions
journal, November 2019

  • Zhang, Xiao‐Jia; Chen, Lunjin; Artemyev, Anton V.
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 11
  • DOI: 10.1029/2019ja027201

Origin of two-band chorus in the radiation belt of Earth
journal, October 2019