DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bandgap Engineering of Lead‐Free Double Perovskite Cs 2 AgBiBr 6 through Trivalent Metal Alloying

Abstract

Abstract The double perovskite family, A 2 M I M III X 6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH 3 NH 3 PbI 3 . Given the generally large indirect band gap within most known double perovskites, band‐gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs 2 AgBiBr 6 as host, band‐gap engineering through alloying of In III /Sb III has been demonstrated in the current work. Cs 2 Ag(Bi 1− x M x )Br 6 (M=In, Sb) accommodates up to 75 % In III with increased band gap, and up to 37.5 % Sb III with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs 2 Ag(Bi 0.625 Sb 0.375 )Br 6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three‐metal systems are also assessed.

Authors:
 [1];  [2];  [2];  [2]; ORCiD logo [1]
  1. Department of Mechanical Engineering and Materials Science, and Department of Chemistry Duke University Box 90300 Hudson Hall Durham NC 27708-0300 USA
  2. Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization The University of Toledo Toledo OH 43606 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1401903
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Name: Angewandte Chemie Journal Volume: 129 Journal Issue: 28; Journal ID: ISSN 0044-8249
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Du, Ke‐zhao, Meng, Weiwei, Wang, Xiaoming, Yan, Yanfa, and Mitzi, David B. Bandgap Engineering of Lead‐Free Double Perovskite Cs 2 AgBiBr 6 through Trivalent Metal Alloying. Germany: N. p., 2017. Web. doi:10.1002/ange.201703970.
Du, Ke‐zhao, Meng, Weiwei, Wang, Xiaoming, Yan, Yanfa, & Mitzi, David B. Bandgap Engineering of Lead‐Free Double Perovskite Cs 2 AgBiBr 6 through Trivalent Metal Alloying. Germany. https://doi.org/10.1002/ange.201703970
Du, Ke‐zhao, Meng, Weiwei, Wang, Xiaoming, Yan, Yanfa, and Mitzi, David B. Mon . "Bandgap Engineering of Lead‐Free Double Perovskite Cs 2 AgBiBr 6 through Trivalent Metal Alloying". Germany. https://doi.org/10.1002/ange.201703970.
@article{osti_1401903,
title = {Bandgap Engineering of Lead‐Free Double Perovskite Cs 2 AgBiBr 6 through Trivalent Metal Alloying},
author = {Du, Ke‐zhao and Meng, Weiwei and Wang, Xiaoming and Yan, Yanfa and Mitzi, David B.},
abstractNote = {Abstract The double perovskite family, A 2 M I M III X 6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH 3 NH 3 PbI 3 . Given the generally large indirect band gap within most known double perovskites, band‐gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs 2 AgBiBr 6 as host, band‐gap engineering through alloying of In III /Sb III has been demonstrated in the current work. Cs 2 Ag(Bi 1− x M x )Br 6 (M=In, Sb) accommodates up to 75 % In III with increased band gap, and up to 37.5 % Sb III with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs 2 Ag(Bi 0.625 Sb 0.375 )Br 6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three‐metal systems are also assessed.},
doi = {10.1002/ange.201703970},
journal = {Angewandte Chemie},
number = 28,
volume = 129,
place = {Germany},
year = {Mon Jun 12 00:00:00 EDT 2017},
month = {Mon Jun 12 00:00:00 EDT 2017}
}

Works referenced in this record:

Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals
journal, March 2016

  • Volonakis, George; Filip, Marina R.; Haghighirad, Amir Abbas
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 7
  • DOI: 10.1021/acs.jpclett.6b00376

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells
journal, March 2013

  • Noh, Jun Hong; Im, Sang Hyuk; Heo, Jin Hyuck
  • Nano Letters, Vol. 13, Issue 4, p. 1764-1769
  • DOI: 10.1021/nl400349b

First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys
journal, February 2000

  • Wei, Su-Huai; Zhang, S. B.; Zunger, Alex
  • Journal of Applied Physics, Vol. 87, Issue 3
  • DOI: 10.1063/1.372014

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Synthesis and Properties of a Lead-Free Hybrid Double Perovskite: (CH 3 NH 3 ) 2 AgBiBr 6
journal, January 2017


Optimization of CIGS-Based PV Device through Antimony Doping
journal, January 2010

  • Yuan, Min; Mitzi, David B.; Liu, Wei
  • Chemistry of Materials, Vol. 22, Issue 2, p. 285-287
  • DOI: 10.1021/cm903428f

Defect-Induced Band-Edge Reconstruction of a Bismuth-Halide Double Perovskite for Visible-Light Absorption
journal, March 2017

  • Slavney, Adam H.; Leppert, Linn; Bartesaghi, Davide
  • Journal of the American Chemical Society, Vol. 139, Issue 14
  • DOI: 10.1021/jacs.7b01629

Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality
journal, January 2017

  • Xiao, Zewen; Meng, Weiwei; Wang, Jianbo
  • Materials Horizons, Vol. 4, Issue 2
  • DOI: 10.1039/C6MH00519E

Cs 2 InAgCl 6 : A New Lead-Free Halide Double Perovskite with Direct Band Gap
journal, January 2017

  • Volonakis, George; Haghighirad, Amir Abbas; Milot, Rebecca L.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 4
  • DOI: 10.1021/acs.jpclett.6b02682

Die Konstitution der Mischkristalle und die Raumf�llung der Atome
journal, January 1921


Chemical Approaches to Addressing the Instability and Toxicity of Lead–Halide Perovskite Absorbers
journal, August 2016


Intrinsic Instability of Cs 2 In(I)M(III)X 6 (M = Bi, Sb; X = Halogen) Double Perovskites: A Combined Density Functional Theory and Experimental Study
journal, April 2017

  • Xiao, Zewen; Du, Ke-Zhao; Meng, Weiwei
  • Journal of the American Chemical Society, Vol. 139, Issue 17
  • DOI: 10.1021/jacs.7b02227

Band-Gap Engineering: From Physics and Materials to New Semiconductor Devices
journal, January 1987


Optical properties of ternary ZnS x Se1?x polycrystalline thin films
journal, January 1985

  • El-Shazly, A. A.; El-Naby, M. M. H.; Kenawy, M. A.
  • Applied Physics A Solids and Surfaces, Vol. 36, Issue 1
  • DOI: 10.1007/BF00616461

Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation
journal, February 2017

  • Zhao, Xin-Gang; Yang, Ji-Hui; Fu, Yuhao
  • Journal of the American Chemical Society, Vol. 139, Issue 7
  • DOI: 10.1021/jacs.6b09645

Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]
journal, June 2006

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 124, Issue 21
  • DOI: 10.1063/1.2204597

Optical Properties and Electronic Structure of Amorphous Germanium
journal, January 1966


Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys
journal, August 1987


Cs 2 AgBiX 6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors
journal, February 2016


Variation with composition of the E 0 and E 0 + Δ 0 gaps in Zn S x Se 1 x alloys
journal, September 1974


Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
journal, September 2016


Energy-gap variations in semiconductor alloys
journal, February 1974


CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure
journal, December 1978


A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications
journal, February 2016

  • Slavney, Adam H.; Hu, Te; Lindenberg, Aaron M.
  • Journal of the American Chemical Society, Vol. 138, Issue 7
  • DOI: 10.1021/jacs.5b13294

Toward Lead-Free Perovskite Solar Cells
journal, November 2016


The Perovskite Fever and Beyond
journal, February 2016


Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites
journal, August 2016


Lead-free organic–inorganic tin halide perovskites for photovoltaic applications
journal, January 2014

  • Noel, Nakita K.; Stranks, Samuel D.; Abate, Antonio
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01076K