DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High‐order methods for low Reynolds number flows around moving obstacles based on universal meshes

Abstract

Summary We propose a family of methods for simulating two‐dimensional incompressible, low Reynolds number flow around a moving obstacle whose motion is prescribed. The methods make use of a universal mesh: a fixed background mesh that adapts to the geometry of the immersed obstacle at all times by adjusting a few elements in the neighborhood of the obstacle's boundary. The resulting mesh provides a conforming triangulation of the fluid domain over which discretizations of any desired order of accuracy in space and time can be constructed using standard finite element spaces together with off‐the‐shelf time integrators. We demonstrate the approach by using Taylor‐Hood elements to approximate the fluid velocity and pressure. To integrate in time, we consider implicit Runge‐Kutta schemes as well as a fractional step scheme. We illustrate the methods and study their convergence numerically via examples that involve flow around obstacles that undergo prescribed deformations. Copyright © 2015 John Wiley & Sons, Ltd.

Authors:
 [1];  [2];  [3]
  1. Computational and Mathematical Engineering Stanford University CA USA
  2. Mechanical Engineering Stanford University CA USA
  3. Computational and Mathematical Engineering Stanford University CA USA, Mechanical Engineering Stanford University CA USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1400702
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
International Journal for Numerical Methods in Engineering
Additional Journal Information:
Journal Name: International Journal for Numerical Methods in Engineering Journal Volume: 104 Journal Issue: 7; Journal ID: ISSN 0029-5981
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Gawlik, Evan S., Kabaria, Hardik, and Lew, Adrian J. High‐order methods for low Reynolds number flows around moving obstacles based on universal meshes. United Kingdom: N. p., 2015. Web. doi:10.1002/nme.4891.
Gawlik, Evan S., Kabaria, Hardik, & Lew, Adrian J. High‐order methods for low Reynolds number flows around moving obstacles based on universal meshes. United Kingdom. https://doi.org/10.1002/nme.4891
Gawlik, Evan S., Kabaria, Hardik, and Lew, Adrian J. Thu . "High‐order methods for low Reynolds number flows around moving obstacles based on universal meshes". United Kingdom. https://doi.org/10.1002/nme.4891.
@article{osti_1400702,
title = {High‐order methods for low Reynolds number flows around moving obstacles based on universal meshes},
author = {Gawlik, Evan S. and Kabaria, Hardik and Lew, Adrian J.},
abstractNote = {Summary We propose a family of methods for simulating two‐dimensional incompressible, low Reynolds number flow around a moving obstacle whose motion is prescribed. The methods make use of a universal mesh: a fixed background mesh that adapts to the geometry of the immersed obstacle at all times by adjusting a few elements in the neighborhood of the obstacle's boundary. The resulting mesh provides a conforming triangulation of the fluid domain over which discretizations of any desired order of accuracy in space and time can be constructed using standard finite element spaces together with off‐the‐shelf time integrators. We demonstrate the approach by using Taylor‐Hood elements to approximate the fluid velocity and pressure. To integrate in time, we consider implicit Runge‐Kutta schemes as well as a fractional step scheme. We illustrate the methods and study their convergence numerically via examples that involve flow around obstacles that undergo prescribed deformations. Copyright © 2015 John Wiley & Sons, Ltd.},
doi = {10.1002/nme.4891},
journal = {International Journal for Numerical Methods in Engineering},
number = 7,
volume = 104,
place = {United Kingdom},
year = {Thu Mar 26 00:00:00 EDT 2015},
month = {Thu Mar 26 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/nme.4891

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements
journal, January 2001


An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions
journal, September 1995

  • Pember, Richard B.; Bell, John B.; Colella, Phillip
  • Journal of Computational Physics, Vol. 120, Issue 2
  • DOI: 10.1006/jcph.1995.1165

An accurate moving boundary formulation in cut-cell methods
journal, February 2013

  • Schneiders, Lennart; Hartmann, Daniel; Meinke, Matthias
  • Journal of Computational Physics, Vol. 235
  • DOI: 10.1016/j.jcp.2012.09.038

Time-discrete higher order ALE formulations: a priori error analysis
journal, March 2013


High-Order Navier-Stokes Simulations Using a Sparse Line-Based Discontinuous Galerkin Method
conference, November 2012

  • Persson, Per-Olof
  • 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
  • DOI: 10.2514/6.2012-456

Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations
journal, November 2005


Conservative interpolation between unstructured meshes via supermesh construction
journal, July 2009

  • Farrell, P. E.; Piggott, M. D.; Pain, C. C.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 198, Issue 33-36
  • DOI: 10.1016/j.cma.2009.03.004

Provably good mesh generation
journal, June 1994


A discontinuous-Galerkin-based immersed boundary method
journal, October 2008

  • Lew, Adrián J.; Buscaglia, Gustavo C.
  • International Journal for Numerical Methods in Engineering, Vol. 76, Issue 4
  • DOI: 10.1002/nme.2312

A finite element method for the simulation of strong and weak discontinuities in solid mechanics
journal, August 2004

  • Hansbo, Anita; Hansbo, Peter
  • Computer Methods in Applied Mechanics and Engineering, Vol. 193, Issue 33-35
  • DOI: 10.1016/j.cma.2003.12.041

Stability analysis of second-order time accurate schemes for ALE–FEM
journal, October 2004

  • Formaggia, Luca; Nobile, Fabio
  • Computer Methods in Applied Mechanics and Engineering, Vol. 193, Issue 39-41
  • DOI: 10.1016/j.cma.2003.09.028

An implementation of singly-implicit Runge-Kutta methods
journal, September 1980

  • Burrage, K.; Butcher, J. C.; Chipman, F. H.
  • BIT, Vol. 20, Issue 3
  • DOI: 10.1007/BF01932774

A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains
journal, March 2005


The Immersed Interface Method for the Navier–Stokes Equations with Singular Forces
journal, August 2001


High-Order LES Simulations using Implicit-Explicit Runge-Kutta Schemes
conference, June 2012

  • Persson, Per-Olof
  • 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
  • DOI: 10.2514/6.2011-684

Sources of spurious force oscillations from an immersed boundary method for moving-body problems
journal, April 2011

  • Lee, Jongho; Kim, Jungwoo; Choi, Haecheon
  • Journal of Computational Physics, Vol. 230, Issue 7
  • DOI: 10.1016/j.jcp.2011.01.004

A sliding mesh technique for the finite element simulation of fluid–solid interaction problems by using variable-node elements
journal, January 2014


High-order ALE schemes for incompressible capillary flows
journal, December 2014

  • Montefuscolo, Felipe; Sousa, Fabricio S.; Buscaglia, Gustavo C.
  • Journal of Computational Physics, Vol. 278
  • DOI: 10.1016/j.jcp.2014.08.030

Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity
journal, March 2006

  • Farhat, Charbel; van der Zee, Kristoffer G.; Geuzaine, Philippe
  • Computer Methods in Applied Mechanics and Engineering, Vol. 195, Issue 17-18
  • DOI: 10.1016/j.cma.2004.11.031

Numerical solution of the Navier-Stokes equations
journal, January 1968


Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations
journal, October 2003


A Discontinuous Galerkin ALE Method for Compressible Viscous Flows in Moving Domains
journal, October 1999

  • Lomtev, I.; Kirby, R. M.; Karniadakis, G. E.
  • Journal of Computational Physics, Vol. 155, Issue 1
  • DOI: 10.1006/jcph.1999.6331

An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction
journal, March 2008

  • Gerstenberger, Axel; Wall, Wolfgang A.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 197, Issue 19-20
  • DOI: 10.1016/j.cma.2007.07.002

Analysis of a Method to Parameterize Planar Curves Immersed In Triangulations
journal, January 2013

  • Rangarajan, Ramsharan; Lew, Adrian J.
  • SIAM Journal on Numerical Analysis, Vol. 51, Issue 3
  • DOI: 10.1137/110831805

Reference Jacobian Optimization-Based Rezone Strategies for Arbitrary Lagrangian Eulerian Methods
journal, February 2002

  • Knupp, Patrick; Margolin, Len G.; Shashkov, Mikhail
  • Journal of Computational Physics, Vol. 176, Issue 1
  • DOI: 10.1006/jcph.2001.6969

The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems
journal, January 2009

  • Baiges, Joan; Codina, Ramon
  • International Journal for Numerical Methods in Engineering
  • DOI: 10.1002/nme.2740

Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
journal, June 2000

  • Fadlun, E. A.; Verzicco, R.; Orlandi, P.
  • Journal of Computational Physics, Vol. 161, Issue 1
  • DOI: 10.1006/jcph.2000.6484

Discontinuous Galerkin spectral element approximations on moving meshes
journal, March 2011

  • Minoli, Cesar A. Acosta; Kopriva, David A.
  • Journal of Computational Physics, Vol. 230, Issue 5
  • DOI: 10.1016/j.jcp.2010.11.038

Viscous flow with large free surface motion
journal, August 1988


An unconditionally stable second-order accurate ALE-FEM scheme for two-dimensional convection-diffusion problems
journal, September 2011

  • Mackenzie, J. A.; Mekwi, W. R.
  • IMA Journal of Numerical Analysis, Vol. 32, Issue 3
  • DOI: 10.1093/imanum/drr021

A Discontinuous Galerkin Method for the Navier-Stokes Equations on Deforming Domains using Unstructured Moving Space-Time Meshes
conference, June 2013

  • Wang, Luming; Persson, Per-Olof
  • 21st AIAA Computational Fluid Dynamics Conference
  • DOI: 10.2514/6.2013-2833

The immersed boundary method
journal, January 2002


Torsional springs for two-dimensional dynamic unstructured fluid meshes
journal, September 1998

  • Farhat, C.; Degand, C.; Koobus, B.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 163, Issue 1-4
  • DOI: 10.1016/S0045-7825(98)00016-4

On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems
journal, September 2005


A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries
journal, November 2001

  • Udaykumar, H. S.; Mittal, R.; Rampunggoon, P.
  • Journal of Computational Physics, Vol. 174, Issue 1
  • DOI: 10.1006/jcph.2001.6916

A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes
journal, August 2012

  • Ferrer, Esteban; Willden, Richard H. J.
  • Journal of Computational Physics, Vol. 231, Issue 21
  • DOI: 10.1016/j.jcp.2012.04.039

An immersed interface method for simulating the interaction of a fluid with moving boundaries
journal, August 2006


High-order finite element methods for moving boundary problems with prescribed boundary evolution
journal, August 2014

  • Gawlik, Evan S.; Lew, Adrian J.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 278
  • DOI: 10.1016/j.cma.2014.05.008

On the geometric conservation law for high-order discontinuous Galerkin discretizations on dynamically deforming meshes
journal, May 2011

  • Mavriplis, Dimitri J.; Nastase, Cristian R.
  • Journal of Computational Physics, Vol. 230, Issue 11
  • DOI: 10.1016/j.jcp.2011.01.022

A Numerical Simulation of Vortex Shedding from an Oscillating Circular Cylinder
journal, August 2002


A discontinuous-Galerkin-based immersed boundary method with non-homogeneous boundary conditions and its application to elasticity
journal, April 2009

  • Rangarajan, Ramsharan; Lew, Adrián; Buscaglia, Gustavo C.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 198, Issue 17-20
  • DOI: 10.1016/j.cma.2009.01.018

The enriched space–time finite element method (EST) for simultaneous solution of fluid–structure interaction
journal, July 2008

  • Zilian, A.; Legay, A.
  • International Journal for Numerical Methods in Engineering, Vol. 75, Issue 3
  • DOI: 10.1002/nme.2258

A Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex Geometries
journal, September 1997

  • Almgren, Ann S.; Bell, John B.; Colella, Phillip
  • SIAM Journal on Scientific Computing, Vol. 18, Issue 5
  • DOI: 10.1137/S1064827594273730

Accurate Projection Methods for the Incompressible Navier–Stokes Equations
journal, April 2001

  • Brown, David L.; Cortez, Ricardo; Minion, Michael L.
  • Journal of Computational Physics, Vol. 168, Issue 2
  • DOI: 10.1006/jcph.2001.6715

Mesh deformation using the biharmonic operator
journal, January 2003

  • Helenbrook, Brian T.
  • International Journal for Numerical Methods in Engineering, Vol. 56, Issue 7
  • DOI: 10.1002/nme.595

An Adaptively Refined Cartesian Mesh Solver for the Euler Equations
journal, January 1993

  • DeZeeuw, Darren; Powell, Kenneth G.
  • Journal of Computational Physics, Vol. 104, Issue 1
  • DOI: 10.1006/jcph.1993.1007

A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations
journal, November 2009


Improved ALE mesh velocities for moving bodies
journal, October 1996


The Blob Projection Method for Immersed Boundary Problems
journal, July 2000


An improved finite element space for discontinuous pressures
journal, March 2010

  • Ausas, Roberto F.; Sousa, Fabrício S.; Buscaglia, Gustavo C.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 199, Issue 17-20
  • DOI: 10.1016/j.cma.2009.11.011

A numerical solution of the Navier-Stokes equations using the finite element technique
journal, January 1973


A cut-cell method for sharp moving boundaries in Cartesian grids
journal, October 2013


A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations
journal, August 2011


Mesh motion techniques for the ALE formulation in 3D large deformation problems
journal, April 2004

  • Farinatti Aymone, José Lu??s
  • International Journal for Numerical Methods in Engineering, Vol. 59, Issue 14
  • DOI: 10.1002/nme.939

Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces
journal, November 1994

  • Johnson, A. A.; Tezduyar, T. E.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 119, Issue 1-2
  • DOI: 10.1016/0045-7825(94)00077-8

Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes: UNIVERSAL MESHES
journal, March 2014

  • Rangarajan, Ramsharan; Lew, Adrián J.
  • International Journal for Numerical Methods in Engineering, Vol. 98, Issue 4
  • DOI: 10.1002/nme.4624

An efficient finite element method for embedded interface problems
journal, April 2009

  • Dolbow, John; Harari, Isaac
  • International Journal for Numerical Methods in Engineering, Vol. 78, Issue 2
  • DOI: 10.1002/nme.2486

Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integrators for highly non-linear compressible fluid-structure interaction problems
journal, August 2010

  • Farhat, C.; Rallu, A.; Wang, K.
  • International Journal for Numerical Methods in Engineering, Vol. 84, Issue 1
  • DOI: 10.1002/nme.2883

Diffuse-Interface Methods in Fluid Mechanics
journal, January 1998


Implicit Runge-Kutta Time Integrators for Fluid-Structure Interactions
conference, June 2010

  • Cori, Jean-François; Etienne, Stephane; Pelletier, Dominique
  • 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
  • DOI: 10.2514/6.2010-1445

ALE formulation for fluid–structure interaction problems
journal, November 2000

  • Souli, M.; Ouahsine, A.; Lewin, L.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 190, Issue 5-7
  • DOI: 10.1016/S0045-7825(99)00432-6

Immersed boundary method for flow around an arbitrarily moving body
journal, March 2006


Flow structure from an oscillating cylinder Part 1. Mechanisms of phase shift and recovery in the near wake
journal, June 1988


High-order temporal accuracy for 3D finite-element ALE flow simulations
journal, September 2014


Une méthode d'approximation de la solution des équations de Navier-Stokes
journal, January 1951

  • Temam, R.
  • Bulletin de la Société mathématique de France, Vol. 79
  • DOI: 10.24033/bsmf.1662

Stability and geometric conservation laws for ALE formulations
journal, October 2004

  • Boffi, Daniele; Gastaldi, Lucia
  • Computer Methods in Applied Mechanics and Engineering, Vol. 193, Issue 42-44
  • DOI: 10.1016/j.cma.2004.02.020

Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics
journal, May 2001

  • Bar-Yoseph, P. Z.; Mereu, S.; Chippada, S.
  • Computational Mechanics, Vol. 27, Issue 5
  • DOI: 10.1007/s004660100250

A conservative interface method for compressible flows
journal, December 2006