skip to main content


This content will become publicly available on September 6, 2018

Title: Low-Cost CdTe/Silicon Tandem Solar Cells

Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrained applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.
ORCiD logo [1] ; ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 2156-3381
Grant/Contract Number:
AC36-08GO28308; EE00025786
Accepted Manuscript
Journal Name:
IEEE Journal of Photovoltaics
Additional Journal Information:
Journal Volume: 7; Journal Issue: 6; Journal ID: ISSN 2156-3381
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
14 SOLAR ENERGY; photovoltaic cells; single-junction; efficiency
OSTI Identifier: