skip to main content

DOE PAGESDOE PAGES

Title: Spatial Distribution of Resonance in the Velocity Field for Transonic Flow over a Rectangular Cavity

Pulse-burst particle image velocimetry (PIV) has been used to acquire time-resolved data at 37.5 kHz of the flow over a finite-width rectangular cavity at Mach 0.8. Power spectra of the PIV data reveal four resonance modes that match the frequencies detected simultaneously using high-frequency wall pressure sensors but whose magnitudes exhibit spatial dependence throughout the cavity. Spatio-temporal cross-correlations of velocity to pressure were calculated after bandpass filtering for specific resonance frequencies. Cross-correlation magnitudes express the distribution of resonance energy, revealing local maxima and minima at the edges of the shear layer attributable to wave interference between downstream- and upstream-propagating disturbances. Turbulence intensities were calculated using a triple decomposition and are greatest in the core of the shear layer for higher modes, where resonant energies ordinarily are lower. Most of the energy for the lowest mode lies in the recirculation region and results principally from turbulence rather than resonance. Together, the velocity-pressure cross-correlations and the triple-decomposition turbulence intensities explain the sources of energy identified in the spatial distributions of power spectra amplitudes.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
SAND-2017-6329J
Journal ID: ISSN 0001-1452; 654524
Grant/Contract Number:
AC04-94AL85000; NA0003525
Type:
Accepted Manuscript
Journal Name:
AIAA Journal
Additional Journal Information:
Journal Volume: 55; Journal Issue: 12; Journal ID: ISSN 0001-1452
Publisher:
AIAA
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
OSTI Identifier:
1399504