DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal metals: Al, Cu, and Zn

Abstract

We use a magnetothermal resistance method to measure lattice thermal conductivity of pure single crystal metals over the intermediate temperature range of 5–60 K. Large transverse magnetic fields are applied to suppress electronic thermal conduction. The total thermal conductivity and the electrical conductivity are measured as functions of applied magnetic field. The lattice thermal conductivity is then extracted by extrapolating the thermal conductivity versus electrical conductivity curve at zero electrical conductivity. We used this method to experimentally measure the lattice thermal conductivity and Lorenz number in single crystal Al (100), Cu (100), and Zn (001) in the intermediate temperature range. Our results show that the measured phonon thermal conductivity versus temperature plot has a peak around ΘD/10, and the Lorenz number is found to deviate from the Sommerfeld value in the intermediate temperature range.

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1398293
Grant/Contract Number:  
SC0001299
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Name: Journal of Applied Physics Journal Volume: 122 Journal Issue: 13; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Yao, Mengliang, Zebarjadi, Mona, and Opeil, Cyril P. Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal metals: Al, Cu, and Zn. United States: N. p., 2017. Web. doi:10.1063/1.4997034.
Yao, Mengliang, Zebarjadi, Mona, & Opeil, Cyril P. Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal metals: Al, Cu, and Zn. United States. https://doi.org/10.1063/1.4997034
Yao, Mengliang, Zebarjadi, Mona, and Opeil, Cyril P. Fri . "Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal metals: Al, Cu, and Zn". United States. https://doi.org/10.1063/1.4997034.
@article{osti_1398293,
title = {Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal metals: Al, Cu, and Zn},
author = {Yao, Mengliang and Zebarjadi, Mona and Opeil, Cyril P.},
abstractNote = {We use a magnetothermal resistance method to measure lattice thermal conductivity of pure single crystal metals over the intermediate temperature range of 5–60 K. Large transverse magnetic fields are applied to suppress electronic thermal conduction. The total thermal conductivity and the electrical conductivity are measured as functions of applied magnetic field. The lattice thermal conductivity is then extracted by extrapolating the thermal conductivity versus electrical conductivity curve at zero electrical conductivity. We used this method to experimentally measure the lattice thermal conductivity and Lorenz number in single crystal Al (100), Cu (100), and Zn (001) in the intermediate temperature range. Our results show that the measured phonon thermal conductivity versus temperature plot has a peak around ΘD/10, and the Lorenz number is found to deviate from the Sommerfeld value in the intermediate temperature range.},
doi = {10.1063/1.4997034},
journal = {Journal of Applied Physics},
number = 13,
volume = 122,
place = {United States},
year = {Fri Oct 06 00:00:00 EDT 2017},
month = {Fri Oct 06 00:00:00 EDT 2017}
}

Works referenced in this record:

Lorenz Number of Lead in a Transverse Magnetic Field
journal, March 1966


Temperature and magnetic field dependence of the electronic and lattice conductivities of tin from 1.3 to 6°K
journal, January 1975


Thermal conductivity of normal and superconducting metals
journal, January 1990


Increased thermoelectric performance by Cl doping in nanostructured AgPb18SbSe20−xClx
journal, November 2013


First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering
journal, June 2016

  • Wang, Yan; Lu, Zexi; Ruan, Xiulin
  • Journal of Applied Physics, Vol. 119, Issue 22
  • DOI: 10.1063/1.4953366

Exact Solutions of Boltzmann's Equation for Combined Electron-Electron Electron-Impurity Scattering
journal, September 1969


Enhancement of Thermoelectric Performance of n-Type PbSe by Cr Doping with Optimized Carrier Concentration
journal, January 2015

  • Zhang, Qian; Chere, Eyob Kebede; McEnaney, Kenneth
  • Advanced Energy Materials, Vol. 5, Issue 8
  • DOI: 10.1002/aenm.201401977

Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles
journal, February 2016


The Thermal Conductivity of Metals at Low Temperatures I: The Elements of Groups 1, 2 and 3
journal, June 1952

  • Mendelssohn, K.; Rosenberg, H. M.
  • Proceedings of the Physical Society. Section A, Vol. 65, Issue 6
  • DOI: 10.1088/0370-1298/65/6/301

Bi2S3 nanonetwork as precursor for improved thermoelectric performance
journal, March 2014


Inelastic scattering in thermal transport properties of deformed copper single crystals
journal, September 1990

  • Fonteyn, D.; Pitsi, G.
  • Journal of Low Temperature Physics, Vol. 80, Issue 5-6
  • DOI: 10.1007/BF00683638

n-type thermoelectric material Mg 2 Sn 0.75 Ge 0.25 for high power generation
journal, March 2015

  • Liu, Weishu; Kim, Hee Seok; Chen, Shuo
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 11
  • DOI: 10.1073/pnas.1424388112

Thermal Magnetoresistance of Zinc at Low Temperatures
journal, January 1956


The electrical and thermal conductivities of some brasses at low temperatures
journal, June 1957


The thermal and electrical resistivity of bismuth and antimony at low temperatures
journal, April 1958


Thermal conductivity in complex metallic alloys: Beyond Wiedemann-Franz law
journal, June 2009


Thermal conductivity and electrical resistivity of copper in intense magnetic fields at low temperatures
journal, September 1982


Separation of the Electronic and Lattice Thermal Conductivities in Bismuth Crystals
journal, October 1974


The thermal conductivity of nickel and its alloys
journal, August 1969


Experimental determinations of the Lorenz number
journal, January 1993

  • Kumar, G. S.; Prasad, G.; Pohl, R. O.
  • Journal of Materials Science, Vol. 28, Issue 16
  • DOI: 10.1007/BF01154931

Lorenz Numbers of pure Aluminum, Silver, and gold at low Temperatures
journal, December 1963

  • Fenton, E. W.; Rogers, J. S.; Woods, S. B.
  • Canadian Journal of Physics, Vol. 41, Issue 12
  • DOI: 10.1139/p63-202

The Thermal and Electrical Conductivity of Copper at Low Temperatures
journal, January 1953

  • White, Gk
  • Australian Journal of Physics, Vol. 6, Issue 4
  • DOI: 10.1071/PH530397

Low-Temperature Electrical and Thermal Resistivities of Tungsten
journal, May 1971


Temperature dependence of the resistance of metallic nanowires of diameter 15 nm : Applicability of Bloch-Grüneisen theorem
journal, July 2006


The thermal conductivity of cadmium arsenide
journal, November 1969


Measurements of the thermal magnetoresistance of aluminum
journal, February 1970

  • Amundsen, T.; S�vik, R. P.
  • Journal of Low Temperature Physics, Vol. 2, Issue 1
  • DOI: 10.1007/BF00628105

Lorenz Number for High-Purity Copper
journal, September 1960


Thermal Conductivity Minimum, Electrical Resistivity, and Lorenz Function of Zinc Monocrystals
journal, July 1987

  • Mucha, J.; Gałuszewski, K.; Jełzowski, A.
  • physica status solidi (b), Vol. 142, Issue 1
  • DOI: 10.1002/pssb.2221420144

Field-dependent thermal conductivity and Lorenz number in Co/Cu multilayers
journal, April 2013