DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Efficiency Nonfullerene Polymer Solar Cells with Thick Active Layer and Large Area

Abstract

In this work, high‐efficiency nonfullerene polymer solar cells (PSCs) are developed based on a thiazolothiazole‐containing wide bandgap polymer PTZ1 as donor and a planar IDT‐based narrow bandgap small molecule with four side chains (IDIC) as acceptor. Through thermal annealing treatment, a power conversion efficiency (PCE) of up to 11.5% with an open circuit voltage ( V oc ) of 0.92 V, a short‐circuit current density ( J sc ) of 16.4 mA cm −2 , and a fill factor of 76.2% is achieved. Furthermore, the PSCs based on PTZ1:IDIC still exhibit a relatively high PCE of 9.6% with the active layer thickness of 210 nm and a superior PCE of 10.5% with the device area of up to 0.81 cm 2 . These results indicate that PTZ1 is a promising polymer donor material for highly efficient fullerene‐free PSCs and large‐scale devices fabrication.

Authors:
 [1];  [1];  [1];  [2];  [2];  [1];  [3]
  1. Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
  2. State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
  3. Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China, Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1393691
Grant/Contract Number:  
DE‐AC02‐05CH11231
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 29 Journal Issue: 36; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Guo, Bing, Li, Wanbin, Guo, Xia, Meng, Xiangyi, Ma, Wei, Zhang, Maojie, and Li, Yongfang. High Efficiency Nonfullerene Polymer Solar Cells with Thick Active Layer and Large Area. Germany: N. p., 2017. Web. doi:10.1002/adma.201702291.
Guo, Bing, Li, Wanbin, Guo, Xia, Meng, Xiangyi, Ma, Wei, Zhang, Maojie, & Li, Yongfang. High Efficiency Nonfullerene Polymer Solar Cells with Thick Active Layer and Large Area. Germany. https://doi.org/10.1002/adma.201702291
Guo, Bing, Li, Wanbin, Guo, Xia, Meng, Xiangyi, Ma, Wei, Zhang, Maojie, and Li, Yongfang. Mon . "High Efficiency Nonfullerene Polymer Solar Cells with Thick Active Layer and Large Area". Germany. https://doi.org/10.1002/adma.201702291.
@article{osti_1393691,
title = {High Efficiency Nonfullerene Polymer Solar Cells with Thick Active Layer and Large Area},
author = {Guo, Bing and Li, Wanbin and Guo, Xia and Meng, Xiangyi and Ma, Wei and Zhang, Maojie and Li, Yongfang},
abstractNote = {In this work, high‐efficiency nonfullerene polymer solar cells (PSCs) are developed based on a thiazolothiazole‐containing wide bandgap polymer PTZ1 as donor and a planar IDT‐based narrow bandgap small molecule with four side chains (IDIC) as acceptor. Through thermal annealing treatment, a power conversion efficiency (PCE) of up to 11.5% with an open circuit voltage ( V oc ) of 0.92 V, a short‐circuit current density ( J sc ) of 16.4 mA cm −2 , and a fill factor of 76.2% is achieved. Furthermore, the PSCs based on PTZ1:IDIC still exhibit a relatively high PCE of 9.6% with the active layer thickness of 210 nm and a superior PCE of 10.5% with the device area of up to 0.81 cm 2 . These results indicate that PTZ1 is a promising polymer donor material for highly efficient fullerene‐free PSCs and large‐scale devices fabrication.},
doi = {10.1002/adma.201702291},
journal = {Advanced Materials},
number = 36,
volume = 29,
place = {Germany},
year = {Mon Jul 24 00:00:00 EDT 2017},
month = {Mon Jul 24 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.201702291

Citation Metrics:
Cited by: 201 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A High-Performing Solution-Processed Small Molecule:Perylene Diimide Bulk Heterojunction Solar Cell
journal, June 2013

  • Sharenko, Alexander; Proctor, Christopher M.; van der Poll, Thomas S.
  • Advanced Materials, Vol. 25, Issue 32
  • DOI: 10.1002/adma.201301167

A Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a Small Voltage Loss
journal, April 2017

  • Chen, Shangshang; Liu, Yuhang; Zhang, Lin
  • Journal of the American Chemical Society, Vol. 139, Issue 18
  • DOI: 10.1021/jacs.7b01606

Fullerene derivative acceptors for high performance polymer solar cells
journal, January 2011

  • He, Youjun; Li, Yongfang
  • Phys. Chem. Chem. Phys., Vol. 13, Issue 6
  • DOI: 10.1039/C0CP01178A

Study of Buffer Layer Thickness on Bulk Heterojunction Solar Cell
journal, October 2010

  • Noh, Seunguk; Suman, C. K.; Lee, Donggu
  • Journal of Nanoscience and Nanotechnology, Vol. 10, Issue 10
  • DOI: 10.1166/jnn.2010.2960

A Rhodanine Flanked Nonfullerene Acceptor for Solution-Processed Organic Photovoltaics
journal, January 2015

  • Holliday, Sarah; Ashraf, Raja Shahid; Nielsen, Christian B.
  • Journal of the American Chemical Society, Vol. 137, Issue 2
  • DOI: 10.1021/ja5110602

High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor
journal, December 2015

  • Meng, Dong; Sun, Dan; Zhong, Chengmei
  • Journal of the American Chemical Society, Vol. 138, Issue 1
  • DOI: 10.1021/jacs.5b11149

Efficient inverted polymer solar cells employing favourable molecular orientation
journal, May 2015


Single-junction polymer solar cells with high efficiency and photovoltage
journal, February 2015


Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis
journal, April 2012

  • Gann, E.; Young, A. T.; Collins, B. A.
  • Review of Scientific Instruments, Vol. 83, Issue 4
  • DOI: 10.1063/1.3701831

A SAXS/WAXS/GISAXS Beamline with Multilayer Monochromator
journal, October 2010


Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells
journal, November 2016

  • Yang, Yankang; Zhang, Zhi-Guo; Bin, Haijun
  • Journal of the American Chemical Society, Vol. 138, Issue 45
  • DOI: 10.1021/jacs.6b09110

Polymer–Fullerene Composite Solar Cells
journal, January 2008

  • Thompson, Barry C.; Fréchet, Jean M. J.
  • Angewandte Chemie International Edition, Vol. 47, Issue 1, p. 58-77
  • DOI: 10.1002/anie.200702506

Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency
journal, March 2006

  • Scharber, M. C.; Mühlbacher, D.; Koppe, M.
  • Advanced Materials, Vol. 18, Issue 6, p. 789-794
  • DOI: 10.1002/adma.200501717

High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends
journal, October 2005

  • Li, Gang; Shrotriya, Vishal; Huang, Jinsong
  • Nature Materials, Vol. 4, Issue 11, p. 864-868
  • DOI: 10.1038/nmat1500

Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer−Fullerene Solar Cells
journal, March 2011

  • Price, Samuel C.; Stuart, Andrew C.; Yang, Liqiang
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja1112595

A 3D star-shaped non-fullerene acceptor for solution-processed organic solar cells with a high open-circuit voltage of 1.18 V
journal, January 2012

  • Lin, Yuze; Cheng, Pei; Li, Yongfang
  • Chemical Communications, Vol. 48, Issue 39
  • DOI: 10.1039/c2cc31511d

Additive-Free Organic Solar Cells with Power Conversion Efficiency over 10%
journal, February 2017


Efficient organic solar cells processed from hydrocarbon solvents
journal, January 2016


Non-fullerene small molecule acceptors based on perylene diimides
journal, January 2016

  • Liu, Zhitian; Wu, Yao; Zhang, Qi
  • Journal of Materials Chemistry A, Vol. 4, Issue 45
  • DOI: 10.1039/C6TA06978A

A wide-bandgap conjugated polymer for highly efficient inverted single and tandem polymer solar cells
journal, January 2016

  • Guo, Bing; Guo, Xia; Li, Wanbin
  • Journal of Materials Chemistry A, Vol. 4, Issue 34
  • DOI: 10.1039/C6TA04950H

Non-Fullerene Electron Acceptors for Use in Organic Solar Cells
journal, October 2015

  • Nielsen, Christian B.; Holliday, Sarah; Chen, Hung-Yang
  • Accounts of Chemical Research, Vol. 48, Issue 11
  • DOI: 10.1021/acs.accounts.5b00199

A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells
journal, November 2015


Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells
journal, November 2014

  • Liu, Yuhang; Zhao, Jingbo; Li, Zhengke
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6293

Nitrile-Substituted QA Derivatives: New Acceptor Materials for Solution-Processable Organic Bulk Heterojunction Solar Cells
journal, April 2011

  • Zhou, Tianlei; Jia, Tao; Kang, Bonan
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 431-439
  • DOI: 10.1002/aenm.201100082

Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells
journal, September 2016


Non-fullerene acceptors for organic photovoltaics: an emerging horizon
journal, January 2014


Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells
journal, March 2005

  • Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.
  • Applied Physics Letters, Vol. 86, Issue 12
  • DOI: 10.1063/1.1889240

Mapping Polymer Donors toward High-Efficiency Fullerene Free Organic Solar Cells
journal, November 2016


Efficient Nonfullerene Polymer Solar Cells Enabled by a Novel Wide Bandgap Small Molecular Acceptor
journal, March 2017


A Narrow Optical Gap Small Molecule Acceptor for Organic Solar Cells
journal, September 2012

  • Fang, Yuan; Pandey, Ajay K.; Nardes, Alexandre M.
  • Advanced Energy Materials, Vol. 3, Issue 1
  • DOI: 10.1002/aenm.201200372

A star-shaped electron acceptor based on 5,5′-bibenzothiadiazole for solution processed solar cells
journal, January 2013

  • Lin, Yuze; Wang, Haifeng; Li, Yongfang
  • Journal of Materials Chemistry A, Vol. 1, Issue 46
  • DOI: 10.1039/c3ta13747c

Efficient truxenone-based acceptors for organic photovoltaics
journal, January 2013

  • Nielsen, Christian B.; Voroshazi, Eszter; Holliday, Sarah
  • Journal of Materials Chemistry A, Vol. 1, Issue 1, p. 73-76
  • DOI: 10.1039/C2TA00548D

High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive
journal, January 2012

  • Guo, Xia; Cui, Chaohua; Zhang, Maojie
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21481d

Efficient photodiodes from interpenetrating polymer networks
journal, August 1995

  • Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.
  • Nature, Vol. 376, Issue 6540, p. 498-500
  • DOI: 10.1038/376498a0

Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells
journal, January 2017

  • Dai, Shuixing; Zhao, Fuwen; Zhang, Qianqian
  • Journal of the American Chemical Society, Vol. 139, Issue 3
  • DOI: 10.1021/jacs.6b12755

Simultaneous Use of Small‐ and Wide‐Angle X‐ray Techniques to Analyze Nanometerscale Phase Separation in Polymer Heterojunction Solar Cells
journal, July 2008

  • Chiu, Mao‐Yuan; Jeng, U‐Ser; Su, Chiu‐Hun
  • Advanced Materials, Vol. 20, Issue 13
  • DOI: 10.1002/adma.200703097

Donor polymer design enables efficient non-fullerene organic solar cells
journal, October 2016

  • Li, Zhengke; Jiang, Kui; Yang, Guofang
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13094

Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions
journal, December 1995


A Solution-Processable Electron Acceptor Based on Dibenzosilole and Diketopyrrolopyrrole for Organic Solar Cells
journal, March 2013

  • Lin, Yuze; Li, Yongfang; Zhan, Xiaowei
  • Advanced Energy Materials, Vol. 3, Issue 6
  • DOI: 10.1002/aenm.201200911

11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor
journal, December 2016

  • Bin, Haijun; Gao, Liang; Zhang, Zhi-Guo
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13651

High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes
journal, June 2015

  • Lu, Luyao; Chen, Wei; Xu, Tao
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8327

A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency
journal, February 2016

  • Lin, Yuze; He, Qiao; Zhao, Fuwen
  • Journal of the American Chemical Society, Vol. 138, Issue 9
  • DOI: 10.1021/jacs.6b00853

Improved Performance in Polymer Solar Cells Using Mixed PC 61 BM/PC 71 BM Acceptors
journal, November 2014

  • Ko, Seo-Jin; Lee, Wonho; Choi, Hyosung
  • Advanced Energy Materials, Vol. 5, Issue 5
  • DOI: 10.1002/aenm.201401687

Polymer solar cells
journal, February 2012


Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors
journal, December 2011

  • Bloking, Jason T.; Han, Xu; Higgs, Andrew T.
  • Chemistry of Materials, Vol. 23, Issue 24, p. 5484-5490
  • DOI: 10.1021/cm203111k

Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency
journal, November 2016

  • Zheng, Zhong; Awartani, Omar M.; Gautam, Bhoj
  • Advanced Materials, Vol. 29, Issue 5
  • DOI: 10.1002/adma.201604241

Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability
journal, April 2016

  • Zhao, Wenchao; Qian, Deping; Zhang, Shaoqing
  • Advanced Materials, Vol. 28, Issue 23
  • DOI: 10.1002/adma.201600281

Recombination-Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells
journal, April 2009

  • Lenes, Martijn; Morana, Mauro; Brabec, Christoph J.
  • Advanced Functional Materials, Vol. 19, Issue 7
  • DOI: 10.1002/adfm.200801514

Competition between the Charge Transfer State and the Singlet States of Donor or Acceptor Limiting the Efficiency in Polymer:Fullerene Solar Cells
journal, December 2011

  • Faist, Mark A.; Kirchartz, Thomas; Gong, Wei
  • Journal of the American Chemical Society, Vol. 134, Issue 1
  • DOI: 10.1021/ja210029w

High-Performance Non-Fullerene Polymer Solar Cells Based on a Pair of Donor-Acceptor Materials with Complementary Absorption Properties
journal, October 2015

  • Lin, Haoran; Chen, Shangshang; Li, Zhengke
  • Advanced Materials, Vol. 27, Issue 45
  • DOI: 10.1002/adma.201502775

Impedance Spectroscopy on Polymer-Fullerene Solar Cells
journal, January 2007

  • Knipper, Martin; Parisi, Jürgen; Coakley, Kevin
  • Zeitschrift für Naturforschung A, Vol. 62, Issue 9
  • DOI: 10.1515/zna-2007-0904

Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells
journal, January 2011

  • Wu, Jyh-Lih; Chen, Fang-Chung; Hsiao, Yu-Sheng
  • ACS Nano, Vol. 5, Issue 2
  • DOI: 10.1021/nn102295p

Beyond Fullerenes: Design of Nonfullerene Acceptors for Efficient Organic Photovoltaics
journal, September 2014

  • Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang
  • Journal of the American Chemical Society, Vol. 136, Issue 41
  • DOI: 10.1021/ja508472j

Indan-1,3-dione electron-acceptor small molecules for solution-processable solar cells: a structure–property correlation
journal, January 2013

  • Winzenberg, Kevin N.; Kemppinen, Peter; Scholes, Fiona H.
  • Chemical Communications, Vol. 49, Issue 56
  • DOI: 10.1039/c3cc42293c

A Non-Fullerene Small Molecule as Efficient Electron Acceptor in Organic Bulk Heterojunction Solar Cells
journal, January 2012