DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle

Abstract

Nominally anhydrous minerals formed deep in the mantle and transported to the Earth’s surface contain tens to hundreds of ppm wt H2O, providing evidence for the presence of dissolved water in the Earth’s interior. Even at these low concentrations, H2O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H2O in the Earth’s upper mantle, but is not fully understood for olivine ((Mg, Fe)2SiO4) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine single crystals that were determined at upper mantle conditions (2 GPa and 750–900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10-10.9, 10-12.8 and 10-11.9 m2/s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σH = 102.12S/m·CH2O·exp-187kJ/mol/(RT). Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H2O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10-2–10-1 S/m) observed in the asthenosphere.

Authors:
 [1];  [2];  [2];  [3];  [2];  [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Cambridge (United Kingdom). Department of Earth Sciences
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1393347
Report Number(s):
LLNL-JRNL-706280
Journal ID: ISSN 2045-2322; PII: 5113
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Novella, Davide, Jacobsen, Benjamin, Weber, Peter K., Tyburczy, James A., Ryerson, Frederick J., and Du Frane, Wyatt L. Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle. United States: N. p., 2017. Web. doi:10.1038/s41598-017-05113-6.
Novella, Davide, Jacobsen, Benjamin, Weber, Peter K., Tyburczy, James A., Ryerson, Frederick J., & Du Frane, Wyatt L. Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle. United States. https://doi.org/10.1038/s41598-017-05113-6
Novella, Davide, Jacobsen, Benjamin, Weber, Peter K., Tyburczy, James A., Ryerson, Frederick J., and Du Frane, Wyatt L. Thu . "Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle". United States. https://doi.org/10.1038/s41598-017-05113-6. https://www.osti.gov/servlets/purl/1393347.
@article{osti_1393347,
title = {Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle},
author = {Novella, Davide and Jacobsen, Benjamin and Weber, Peter K. and Tyburczy, James A. and Ryerson, Frederick J. and Du Frane, Wyatt L.},
abstractNote = {Nominally anhydrous minerals formed deep in the mantle and transported to the Earth’s surface contain tens to hundreds of ppm wt H2O, providing evidence for the presence of dissolved water in the Earth’s interior. Even at these low concentrations, H2O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H2O in the Earth’s upper mantle, but is not fully understood for olivine ((Mg, Fe)2SiO4) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine single crystals that were determined at upper mantle conditions (2 GPa and 750–900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10-10.9, 10-12.8 and 10-11.9 m2/s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σH = 102.12S/m·CH2O·exp-187kJ/mol/(RT). Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H2O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10-2–10-1 S/m) observed in the asthenosphere.},
doi = {10.1038/s41598-017-05113-6},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = {Thu Jul 13 00:00:00 EDT 2017},
month = {Thu Jul 13 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals
journal, March 1992


Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals
journal, March 1992


High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine
journal, December 2014


Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere
journal, October 2006

  • Yoshino, Takashi; Matsuzaki, Takuya; Yamashita, Shigeru
  • Nature, Vol. 443, Issue 7114
  • DOI: 10.1038/nature05223

The role of hydrogen in the electrical conductivity of the upper mantle
journal, September 1990


Water in the mantle: Results from electrical conductivity beneath the French Alps: CONDUCTIVITY BENEATH THE FRENCH ALPS
journal, March 2004

  • Tarits, P.; Hautot, S.; Perrier, F.
  • Geophysical Research Letters, Vol. 31, Issue 6
  • DOI: 10.1029/2003GL019277

The role of hydrogen in the electrical conductivity of the upper mantle
journal, September 1990


Evidence of electrical anisotropic structures in the lower crust and the upper mantle beneath the Rhenish Shield
journal, September 2002

  • Leibecker, Jörg; Gatzemeier, Alexander; Hönig, Mark
  • Earth and Planetary Science Letters, Vol. 202, Issue 2
  • DOI: 10.1016/s0012-821x(02)00783-5

Melting of a peridotite nodule at high pressures and high water pressures
journal, September 1968

  • Kushiro, Ikuo; Syono, Yasuhiko; Akimoto, Syun-ichi
  • Journal of Geophysical Research, Vol. 73, Issue 18
  • DOI: 10.1029/jb073i018p06023

Mechanism of Diffusion of Copper in Germanium
journal, November 1956


D/H exchange in pure and Cr-doped enstatite: implications for hydrogen diffusivity
journal, September 2006


Hydrogen incorporation in olivine from 2-12 GPa
journal, February 2006


Upper mantle conductivity structure of the back-arc region beneath northeastern China
journal, October 2001

  • Ichiki, Masahiro; Uyeshima, Makoto; Utada, Hisashi
  • Geophysical Research Letters, Vol. 28, Issue 19
  • DOI: 10.1029/2001gl012983

Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al.
journal, May 2009

  • Karato, Shun-ichiro; Dai, Lidong
  • Physics of the Earth and Planetary Interiors, Vol. 174, Issue 1-4
  • DOI: 10.1016/j.pepi.2009.01.011

Reply to Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al.
journal, May 2009

  • Yoshino, Takashi; Katsura, Tomoo
  • Physics of the Earth and Planetary Interiors, Vol. 174, Issue 1-4
  • DOI: 10.1016/j.pepi.2009.01.012

Solubility of water in the α, β and γ phases of (Mg,Fe) 2 SiO 4
journal, May 1996

  • Kohlstedt, D. L.; Keppler, H.; Rubie, D. C.
  • Contributions to Mineralogy and Petrology, Vol. 123, Issue 4
  • DOI: 10.1007/s004100050161

A melt and fluid inclusion study of the gas phase at Piton de la Fournaise volcano (Réunion Island)
journal, May 1998


Ringwoodite growth rates from olivine with ∼75ppmw H2O: Metastable olivine must be nearly anhydrous to exist in the mantle transition zone
journal, June 2013

  • Du Frane, Wyatt L.; Sharp, Thomas G.; Mosenfelder, Jed L.
  • Physics of the Earth and Planetary Interiors, Vol. 219
  • DOI: 10.1016/j.pepi.2013.04.001

Adiabatic temperature profile in the mantle
journal, November 2010

  • Katsura, Tomoo; Yoneda, Akira; Yamazaki, Daisuke
  • Physics of the Earth and Planetary Interiors, Vol. 183, Issue 1-2
  • DOI: 10.1016/j.pepi.2010.07.001

Laboratory-based electrical conductivity in the Earth's mantle
journal, December 2000

  • Xu, Yousheng; Shankland, Thomas J.; Poe, Brent T.
  • Journal of Geophysical Research: Solid Earth, Vol. 105, Issue B12
  • DOI: 10.1029/2000jb900299

Some notes on hydrogen-related point defects and their role in the isotope exchange and electrical conductivity in olivine
journal, November 2015


Olivine hydration in the deep upper mantle: Effects of temperature and silica activity
journal, January 2006

  • Smyth, J. R.; Frost, D. J.; Nestola, F.
  • Geophysical Research Letters, Vol. 33, Issue 15
  • DOI: 10.1029/2006gl026194

Melt-rich channel observed at the lithosphere–asthenosphere boundary
journal, March 2013


Olivine water contents in the continental lithosphere and the longevity of cratons
journal, September 2010

  • Peslier, Anne H.; Woodland, Alan B.; Bell, David R.
  • Nature, Vol. 467, Issue 7311
  • DOI: 10.1038/nature09317

Deuterium-hydrogen exchange in olivine: Implications for point defects and electrical conductivity: D-H EXCHANGE IN OLIVINE
journal, March 2012

  • Du Frane, Wyatt L.; Tyburczy, James A.
  • Geochemistry, Geophysics, Geosystems, Vol. 13, Issue 3
  • DOI: 10.1029/2011gc003895

The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle
journal, August 2014


Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine
journal, December 2012


Hydrous mantle transition zone indicated by ringwoodite included within diamond
journal, March 2014

  • Pearson, D. G.; Brenker, F. E.; Nestola, F.
  • Nature, Vol. 507, Issue 7491
  • DOI: 10.1038/nature13080

Site-specific hydrogen diffusion rates in forsterite
journal, April 2014

  • Padrón-Navarta, José Alberto; Hermann, Joerg; O'Neill, Hugh St. C.
  • Earth and Planetary Science Letters, Vol. 392
  • DOI: 10.1016/j.epsl.2014.01.055

The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials
journal, January 1982


Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al.
journal, May 2009

  • Karato, Shun-ichiro; Dai, Lidong
  • Physics of the Earth and Planetary Interiors, Vol. 174, Issue 1-4
  • DOI: 10.1016/j.pepi.2009.01.011

Hydrogen incorporation in olivine from 2-12 GPa
journal, February 2006


26Al tracer diffusion in titanium doped single crystalline α-Al2O3
journal, May 2008


Anisotropy of electrical conductivity in dry olivine
journal, January 2005

  • Du Frane, Wyatt L.; Roberts, Jeffery J.; Toffelmier, Daniel A.
  • Geophysical Research Letters, Vol. 32, Issue 24
  • DOI: 10.1029/2005gl023879

Reply to Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al.
journal, May 2009

  • Yoshino, Takashi; Katsura, Tomoo
  • Physics of the Earth and Planetary Interiors, Vol. 174, Issue 1-4
  • DOI: 10.1016/j.pepi.2009.01.012

Diffusion of the hydrous component in pyrope
journal, June 1996

  • Wang, Liping; Zhang, Youxue; Essene, Eric J.
  • American Mineralogist, Vol. 81, Issue 5-6
  • DOI: 10.2138/am-1996-5-618

D/H exchange in pure and Cr-doped enstatite: implications for hydrogen diffusivity
journal, September 2006


Electrical conductivity anisotropy of dry and hydrous olivine at 8GPa
journal, August 2010

  • Poe, Brent T.; Romano, Claudia; Nestola, Fabrizio
  • Physics of the Earth and Planetary Interiors, Vol. 181, Issue 3-4
  • DOI: 10.1016/j.pepi.2010.05.003

SEO3: A new model of olivine electrical conductivity
journal, July 2006


Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine
journal, April 2006


Toward a unified hydrous olivine electrical conductivity law
journal, December 2014

  • Gardés, Emmanuel; Gaillard, Fabrice; Tarits, Pascal
  • Geochemistry, Geophysics, Geosystems, Vol. 15, Issue 12
  • DOI: 10.1002/2014gc005496

Electrical conductivity of wadsleyite as a function of temperature and water content
journal, May 2009

  • Manthilake, M. A. G. M.; Matsuzaki, Takuya; Yoshino, Takashi
  • Physics of the Earth and Planetary Interiors, Vol. 174, Issue 1-4
  • DOI: 10.1016/j.pepi.2008.06.001

Some notes on hydrogen-related point defects and their role in the isotope exchange and electrical conductivity in olivine
journal, November 2015


Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle
journal, October 2002

  • Saal, Alberto E.; Hauri, Erik H.; Langmuir, Charles H.
  • Nature, Vol. 419, Issue 6906
  • DOI: 10.1038/nature01073

The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle
journal, October 2009

  • Yoshino, Takashi; Matsuzaki, Takuya; Shatskiy, Anton
  • Earth and Planetary Science Letters, Vol. 288, Issue 1-2
  • DOI: 10.1016/j.epsl.2009.09.032

H2O storage capacity of olivine at 5–8GPa and consequences for dehydration partial melting of the upper mantle
journal, September 2012


Hydrogen self‐diffusivity in single crystal ringwoodite: Implications for water content and distribution in the mantle transition zone
journal, August 2015

  • Sun, Wei; Yoshino, Takashi; Sakamoto, Naoya
  • Geophysical Research Letters, Vol. 42, Issue 16
  • DOI: 10.1002/2015GL064486

Electrical conductivity of wadsleyite as a function of temperature and water content
journal, May 2009

  • Manthilake, M. A. G. M.; Matsuzaki, Takuya; Yoshino, Takashi
  • Physics of the Earth and Planetary Interiors, Vol. 174, Issue 1-4
  • DOI: 10.1016/j.pepi.2008.06.001

H2O storage capacity of olivine at 5–8GPa and consequences for dehydration partial melting of the upper mantle
journal, September 2012


Water in the Earth's mantle
journal, June 2005


The electrical conductivity of an isotropic olivine mantle
journal, March 1992

  • Constable, Steven; Shankland, Thomas J.; Duba, Al
  • Journal of Geophysical Research: Solid Earth, Vol. 97, Issue B3
  • DOI: 10.1029/91jb02453

Diffusion of Hydrogen and Intrinsic Point Defects in Olivine
journal, January 1998


The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle
journal, October 2009

  • Yoshino, Takashi; Matsuzaki, Takuya; Shatskiy, Anton
  • Earth and Planetary Science Letters, Vol. 288, Issue 1-2
  • DOI: 10.1016/j.epsl.2009.09.032

Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum: HYDROXIDE IN OLIVINE
journal, February 2003

  • Bell, David R.; Rossman, George R.; Maldener, Joachim
  • Journal of Geophysical Research: Solid Earth, Vol. 108, Issue B2
  • DOI: 10.1029/2001JB000679

WATER, MELTING, AND THE DEEP EARTH H 2 O CYCLE
journal, May 2006


The effect of water on the electrical conductivity of olivine
journal, October 2006

  • Wang, Duojun; Mookherjee, Mainak; Xu, Yousheng
  • Nature, Vol. 443, Issue 7114
  • DOI: 10.1038/nature05256

Melt-rich channel observed at the lithosphere–asthenosphere boundary
journal, March 2013


Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle
journal, October 2002

  • Saal, Alberto E.; Hauri, Erik H.; Langmuir, Charles H.
  • Nature, Vol. 419, Issue 6906
  • DOI: 10.1038/nature01073

The effect of water on the electrical conductivity of olivine
journal, October 2006

  • Wang, Duojun; Mookherjee, Mainak; Xu, Yousheng
  • Nature, Vol. 443, Issue 7114
  • DOI: 10.1038/nature05256

Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine
journal, December 2012


Site-specific hydrogen diffusion rates in forsterite
journal, April 2014

  • Padrón-Navarta, José Alberto; Hermann, Joerg; O'Neill, Hugh St. C.
  • Earth and Planetary Science Letters, Vol. 392
  • DOI: 10.1016/j.epsl.2014.01.055

Electrical conductivity anisotropy of dry and hydrous olivine at 8GPa
journal, August 2010

  • Poe, Brent T.; Romano, Claudia; Nestola, Fabrizio
  • Physics of the Earth and Planetary Interiors, Vol. 181, Issue 3-4
  • DOI: 10.1016/j.pepi.2010.05.003

Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine
journal, April 2006


Water in the Earth's mantle
journal, June 2005


WATER, MELTING, AND THE DEEP EARTH H 2 O CYCLE
journal, May 2006


Mantle dynamics beneath the East Pacific Rise at 17°S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiment: MANTLE DYNAMICS BENEATH THE EPR AT 17°S
journal, February 2006

  • Baba, Kiyoshi; Chave, Alan D.; Evans, Rob L.
  • Journal of Geophysical Research: Solid Earth, Vol. 111, Issue B2
  • DOI: 10.1029/2004JB003598

Hydrous mantle transition zone indicated by ringwoodite included within diamond
journal, March 2014

  • Pearson, D. G.; Brenker, F. E.; Nestola, F.
  • Nature, Vol. 507, Issue 7491
  • DOI: 10.1038/nature13080

Ringwoodite growth rates from olivine with ∼75ppmw H2O: Metastable olivine must be nearly anhydrous to exist in the mantle transition zone
journal, June 2013

  • Du Frane, Wyatt L.; Sharp, Thomas G.; Mosenfelder, Jed L.
  • Physics of the Earth and Planetary Interiors, Vol. 219
  • DOI: 10.1016/j.pepi.2013.04.001

Diffusion of hydrogen in olivine: Implications for water in the mantle
journal, January 1990

  • Mackwell, Stephen J.; Kohlstedt, David L.
  • Journal of Geophysical Research, Vol. 95, Issue B4
  • DOI: 10.1029/jb095ib04p05079

Solubility of water in the α, β and γ phases of (Mg,Fe) 2 SiO 4
journal, May 1996

  • Kohlstedt, D. L.; Keppler, H.; Rubie, D. C.
  • Contributions to Mineralogy and Petrology, Vol. 123, Issue 4
  • DOI: 10.1007/s004100050161

Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere
journal, October 2006

  • Yoshino, Takashi; Matsuzaki, Takuya; Yamashita, Shigeru
  • Nature, Vol. 443, Issue 7114
  • DOI: 10.1038/nature05223

26Al tracer diffusion in titanium doped single crystalline α-Al2O3
journal, May 2008


Works referencing / citing this record:

Point defect populations of forsterite revealed by two-stage metastable hydroxylation experiments
journal, May 2019

  • Le Losq, Charles; Jollands, Michael C.; Tollan, Peter M. E.
  • Contributions to Mineralogy and Petrology, Vol. 174, Issue 6
  • DOI: 10.1007/s00410-019-1590-6

An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone
journal, January 2020

  • Dai, Lidong; Hu, Haiying; Jiang, Jianjun
  • Materials, Vol. 13, Issue 2
  • DOI: 10.3390/ma13020408

H‐D Interdiffusion in Single‐Crystal Olivine: Implications for Electrical Conductivity in the Upper Mantle
journal, June 2019

  • Sun, Wei; Yoshino, Takashi; Kuroda, Minami
  • Journal of Geophysical Research: Solid Earth, Vol. 124, Issue 6
  • DOI: 10.1029/2019jb017576

An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone
journal, January 2020

  • Dai, Lidong; Hu, Haiying; Jiang, Jianjun
  • Materials, Vol. 13, Issue 2
  • DOI: 10.3390/ma13020408