DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pressurizing Field-Effect Transistors of Few-Layer MoS2 in a Diamond Anvil Cell

Abstract

Hydrostatic pressure applied using diamond anvil cells (DAC) has been widely explored to modulate physical properties of materials by tuning their lattice degree of freedom. Independently, electrical field is able to tune the electronic degree of freedom of functional materials via, for example, the field-effect transistor (FET) configuration. Combining these two orthogonal approaches would allow discovery of new physical properties and phases going beyond the known phase space. Such experiments are, however, technically challenging and have not been demonstrated. In this paper, we report a feasible strategy to prepare and measure FETs in a DAC by lithographically patterning the nanodevices onto the diamond culet. Multiple-terminal FETs were fabricated in the DAC using few-layer MoS2 and BN as the channel semiconductor and dielectric layer, respectively. It is found that the mobility, conductance, carrier concentration, and contact conductance of MoS2 can all be significantly enhanced with pressure. Finally, we expect that the approach could enable unprecedented ways to explore new phases and properties of materials under coupled mechano-electrostatic modulation.

Authors:
 [1];  [2];  [1];  [1]; ORCiD logo [1];  [1];  [3];  [4];  [1];  [1];  [3];  [2]; ORCiD logo [3]
  1. Univ. of California, Berkeley, CA (United States)
  2. Center for High Pressure Science and Technology Advanced Research, Shanghai (China)
  3. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Army Research Office (ARO)
OSTI Identifier:
1393110
Grant/Contract Number:  
AC02-05CH11231; DMR-1306601; CMMI-1434147; EAR 11- 57758; W911NF-14-1-0104
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 17; Journal Issue: 1; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; diamond anvil cell; field-effect transistor; h-BN dielectric; hydrostatic pressure; MoS2

Citation Formats

Chen, Yabin, Ke, Feng, Ci, Penghong, Ko, Changhyun, Park, Taegyun, Saremi, Sahar, Liu, Huili, Lee, Yeonbae, Suh, Joonki, Martin, Lane W., Ager, Joel W., Chen, Bin, and Wu, Junqiao. Pressurizing Field-Effect Transistors of Few-Layer MoS2 in a Diamond Anvil Cell. United States: N. p., 2016. Web. doi:10.1021/acs.nanolett.6b03785.
Chen, Yabin, Ke, Feng, Ci, Penghong, Ko, Changhyun, Park, Taegyun, Saremi, Sahar, Liu, Huili, Lee, Yeonbae, Suh, Joonki, Martin, Lane W., Ager, Joel W., Chen, Bin, & Wu, Junqiao. Pressurizing Field-Effect Transistors of Few-Layer MoS2 in a Diamond Anvil Cell. United States. https://doi.org/10.1021/acs.nanolett.6b03785
Chen, Yabin, Ke, Feng, Ci, Penghong, Ko, Changhyun, Park, Taegyun, Saremi, Sahar, Liu, Huili, Lee, Yeonbae, Suh, Joonki, Martin, Lane W., Ager, Joel W., Chen, Bin, and Wu, Junqiao. Thu . "Pressurizing Field-Effect Transistors of Few-Layer MoS2 in a Diamond Anvil Cell". United States. https://doi.org/10.1021/acs.nanolett.6b03785. https://www.osti.gov/servlets/purl/1393110.
@article{osti_1393110,
title = {Pressurizing Field-Effect Transistors of Few-Layer MoS2 in a Diamond Anvil Cell},
author = {Chen, Yabin and Ke, Feng and Ci, Penghong and Ko, Changhyun and Park, Taegyun and Saremi, Sahar and Liu, Huili and Lee, Yeonbae and Suh, Joonki and Martin, Lane W. and Ager, Joel W. and Chen, Bin and Wu, Junqiao},
abstractNote = {Hydrostatic pressure applied using diamond anvil cells (DAC) has been widely explored to modulate physical properties of materials by tuning their lattice degree of freedom. Independently, electrical field is able to tune the electronic degree of freedom of functional materials via, for example, the field-effect transistor (FET) configuration. Combining these two orthogonal approaches would allow discovery of new physical properties and phases going beyond the known phase space. Such experiments are, however, technically challenging and have not been demonstrated. In this paper, we report a feasible strategy to prepare and measure FETs in a DAC by lithographically patterning the nanodevices onto the diamond culet. Multiple-terminal FETs were fabricated in the DAC using few-layer MoS2 and BN as the channel semiconductor and dielectric layer, respectively. It is found that the mobility, conductance, carrier concentration, and contact conductance of MoS2 can all be significantly enhanced with pressure. Finally, we expect that the approach could enable unprecedented ways to explore new phases and properties of materials under coupled mechano-electrostatic modulation.},
doi = {10.1021/acs.nanolett.6b03785},
journal = {Nano Letters},
number = 1,
volume = 17,
place = {United States},
year = {Thu Dec 08 00:00:00 EST 2016},
month = {Thu Dec 08 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Physical and chemical tuning of two-dimensional transition metal dichalcogenides
journal, January 2015

  • Wang, Haotian; Yuan, Hongtao; Sae Hong, Seung
  • Chemical Society Reviews, Vol. 44, Issue 9
  • DOI: 10.1039/C4CS00287C

Black phosphorus field-effect transistors
journal, March 2014


Pressure-induced structural transition of CdxZn1−xO alloys
journal, April 2016

  • Chen, Yabin; Zhang, Shuai; Gao, Weiwei
  • Applied Physics Letters, Vol. 108, Issue 15
  • DOI: 10.1063/1.4947022

Monolayer excitonic laser
journal, October 2015


Bandgap Engineering of Strained Monolayer and Bilayer MoS2
journal, July 2013

  • Conley, Hiram J.; Wang, Bin; Ziegler, Jed I.
  • Nano Letters, Vol. 13, Issue 8, p. 3626-3630
  • DOI: 10.1021/nl4014748

Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
journal, March 2016


Gate-induced superconductivity in atomically thin MoS2 crystals
journal, January 2016

  • Costanzo, Davide; Jo, Sanghyun; Berger, Helmuth
  • Nature Nanotechnology, Vol. 11, Issue 4
  • DOI: 10.1038/nnano.2015.314

Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide
journal, November 2015

  • Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9826

Gate-tunable phase transitions in thin flakes of 1T-TaS2
journal, January 2015


Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015

  • Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
  • Nature, Vol. 525, Issue 7567
  • DOI: 10.1038/nature14964

Evidence for a new phase of dense hydrogen above 325 gigapascals
journal, January 2016

  • Dalladay-Simpson, Philip; Howie, Ross T.; Gregoryanz, Eugene
  • Nature, Vol. 529, Issue 7584
  • DOI: 10.1038/nature16164

Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide
journal, May 2014

  • Nayak, Avinash P.; Bhattacharyya, Swastibrata; Zhu, Jie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4731

Pressure-Induced Metallization of Molybdenum Disulfide
journal, July 2014


Pressure-Modulated Conductivity, Carrier Density, and Mobility of Multilayered Tungsten Disulfide
journal, August 2015


Integrated microcircuit on a diamond anvil for high-pressure electrical resistivity measurement
journal, February 2005

  • Han, Yonghao; Gao, Chunxiao; Ma, Yanzhang
  • Applied Physics Letters, Vol. 86, Issue 6
  • DOI: 10.1063/1.1863444

In situ Hall effect measurement on diamond anvil cell under high pressure
journal, November 2010

  • Hu, Tingjing; Cui, Xiaoyan; Gao, Yang
  • Review of Scientific Instruments, Vol. 81, Issue 11
  • DOI: 10.1063/1.3501384

High-pressure resistivity technique for quasi-hydrostatic compression experiments
journal, June 2013

  • Rotundu, C. R.; Ćuk, T.; Greene, R. L.
  • Review of Scientific Instruments, Vol. 84, Issue 6
  • DOI: 10.1063/1.4809025

A cubic boron nitride gasket for diamond-anvil experiments
journal, May 2008

  • Funamori, Nobumasa; Sato, Tomoko
  • Review of Scientific Instruments, Vol. 79, Issue 5
  • DOI: 10.1063/1.2917409

From Bulk to Monolayer MoS2: Evolution of Raman Scattering
journal, January 2012

  • Li, Hong; Zhang, Qing; Yap, Chin Chong Ray
  • Advanced Functional Materials, Vol. 22, Issue 7
  • DOI: 10.1002/adfm.201102111

Comparative high pressure Raman study of boron nitride nanotubes and hexagonal boron nitride
journal, April 2006


Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Ambipolar Molybdenum Diselenide Field-Effect Transistors: Field-Effect and Hall Mobilities
journal, July 2014

  • Pradhan, Nihar R.; Rhodes, Daniel; Xin, Yan
  • ACS Nano, Vol. 8, Issue 8, p. 7923-7929
  • DOI: 10.1021/nn501693d

Hysteresis in Single-Layer MoS 2 Field Effect Transistors
journal, May 2012

  • Late, Dattatray J.; Liu, Bin; Matte, H. S. S. Ramakrishna
  • ACS Nano, Vol. 6, Issue 6
  • DOI: 10.1021/nn301572c

Boron Nitride–Graphene Nanocapacitor and the Origins of Anomalous Size-Dependent Increase of Capacitance
journal, March 2014

  • Shi, Gang; Hanlumyuang, Yuranan; Liu, Zheng
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl4037824

Isothermal compression of hexagonal graphite-like boron nitride up to 12 GPa
journal, October 1995


Pressure dependence of the optical-absorption edge of AlN and graphite-type BN
journal, May 2002

  • Akamaru, Hisamitsu; Onodera, Akifumi; Endo, Tadashi
  • Journal of Physics and Chemistry of Solids, Vol. 63, Issue 5
  • DOI: 10.1016/S0022-3697(01)00244-X

Energy gap–refractive index relations in semiconductors – An overview
journal, March 2007


High Performance Multilayer MoS2Transistors with Scandium Contacts
journal, December 2012

  • Das, Saptarshi; Chen, Hong-Yan; Penumatcha, Ashish Verma
  • Nano Letters, Vol. 13, Issue 1, p. 100-105
  • DOI: 10.1021/nl303583v

Probing Spin–Orbit Coupling and Interlayer Coupling in Atomically Thin Molybdenum Disulfide Using Hydrostatic Pressure
journal, December 2015


High pressure effect on structure, electronic structure, and thermoelectric properties of MoS2
journal, January 2013

  • Guo, Huaihong; Yang, Teng; Tao, Peng
  • Journal of Applied Physics, Vol. 113, Issue 1
  • DOI: 10.1063/1.4772616

Solidification of High-Pressure Medium Daphne 7373
journal, June 2007

  • Yokogawa, Keiichi; Murata, Keizo; Yoshino, Harukazu
  • Japanese Journal of Applied Physics, Vol. 46, Issue 6A
  • DOI: 10.1143/JJAP.46.3636

The ruby pressure standard to 150GPa
journal, December 2005

  • Chijioke, Akobuije D.; Nellis, W. J.; Soldatov, A.
  • Journal of Applied Physics, Vol. 98, Issue 11
  • DOI: 10.1063/1.2135877