DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics

Abstract

In this paper, we report the application of a conjugated copolymer based on thiophene and quinoxaline units, namely poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1), to nanoparticle organic photovoltaics (NP-OPVs). TQ1 exhibits more desirable material properties for NP-OPV fabrication and operation, particularly a high glass transition temperature (Tg) and amorphous nature, compared to the commonly applied semicrystalline polymer poly(3-hexylthiophene) (P3HT). This study reports the optimisation of TQ1:PC71BM (phenyl C71 butyric acid methyl ester) NP-OPV device performance by the application of mild thermal annealing treatments in the range of the Tg (sub-Tg and post-Tg), both in the active layer drying stage and post-cathode deposition annealing stage of device fabrication, and an in-depth study of the effect of these treatments on nanoparticle film morphology. Finally and in addition, we report a type of morphological evolution in nanoparticle films for OPV active layers that has not previously been observed, that of PC71BM nano-pathway formation between dispersed PC71BM-rich nanoparticle cores, which have the benefit of making the bulk film more conducive to charge percolation and extraction.

Authors:
 [1];  [1];  [2];  [3];  [1];  [1];  [4];  [5];  [1];  [6];  [7];  [6];  [1];  [8];  [1];  [1]
  1. Univ. of Newcastle, NSW (Australia)
  2. Univ. of Newcastle, NSW (Australia); CSIR-National Physical Lab., New Delhi (India)
  3. Univ. of South Australia, Adelaide, SA (Australia)
  4. Univ. of Newcastle, NSW (Australia); CSIRO Energy Flagship, Newcastle, NSW (Australia)
  5. Univ. of Queensland, Brisbane, QLD (Australia); Murdoch Univ., Perth, WA (Australia)
  6. Chalmers Univ. of Technology, Gothenburg (Sweden)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  8. Univ. of South Australia, Adelaide, SA (Australia); Chalmers Univ. of Technology, Gothenburg (Sweden)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Australian Renewable Energy Agency (ARENA) (Australia); Commonwealth of Australia; Australian Research Council (ARC)
OSTI Identifier:
1393009
Alternate Identifier(s):
OSTI ID: 1461032
Grant/Contract Number:  
AC02-05CH11231; ARC DECRA DE120102271; UQ ECR59-2011002311; UQ NSRSF-2011002734
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 19; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; Water processable solar cells; Nanoparticle; Organic photovoltaic; Blend morphology; Glass transition temperature; Scanning transmission X-ray microscopy

Citation Formats

Holmes, Natalie P., Marks, Melissa, Kumar, Pankaj, Kroon, Renee, Barr, Matthew G., Nicolaidis, Nicolas, Feron, Krishna, Pivrikas, Almantas, Fahy, Adam, Mendaza, Amaia Diaz de Zerio, Kilcoyne, A. L. David, Müller, Christian, Zhou, Xiaojing, Andersson, Mats R., Dastoor, Paul C., and Belcher, Warwick J. Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics. United States: N. p., 2015. Web. doi:10.1016/j.nanoen.2015.11.021.
Holmes, Natalie P., Marks, Melissa, Kumar, Pankaj, Kroon, Renee, Barr, Matthew G., Nicolaidis, Nicolas, Feron, Krishna, Pivrikas, Almantas, Fahy, Adam, Mendaza, Amaia Diaz de Zerio, Kilcoyne, A. L. David, Müller, Christian, Zhou, Xiaojing, Andersson, Mats R., Dastoor, Paul C., & Belcher, Warwick J. Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics. United States. https://doi.org/10.1016/j.nanoen.2015.11.021
Holmes, Natalie P., Marks, Melissa, Kumar, Pankaj, Kroon, Renee, Barr, Matthew G., Nicolaidis, Nicolas, Feron, Krishna, Pivrikas, Almantas, Fahy, Adam, Mendaza, Amaia Diaz de Zerio, Kilcoyne, A. L. David, Müller, Christian, Zhou, Xiaojing, Andersson, Mats R., Dastoor, Paul C., and Belcher, Warwick J. Thu . "Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics". United States. https://doi.org/10.1016/j.nanoen.2015.11.021. https://www.osti.gov/servlets/purl/1393009.
@article{osti_1393009,
title = {Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics},
author = {Holmes, Natalie P. and Marks, Melissa and Kumar, Pankaj and Kroon, Renee and Barr, Matthew G. and Nicolaidis, Nicolas and Feron, Krishna and Pivrikas, Almantas and Fahy, Adam and Mendaza, Amaia Diaz de Zerio and Kilcoyne, A. L. David and Müller, Christian and Zhou, Xiaojing and Andersson, Mats R. and Dastoor, Paul C. and Belcher, Warwick J.},
abstractNote = {In this paper, we report the application of a conjugated copolymer based on thiophene and quinoxaline units, namely poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1), to nanoparticle organic photovoltaics (NP-OPVs). TQ1 exhibits more desirable material properties for NP-OPV fabrication and operation, particularly a high glass transition temperature (Tg) and amorphous nature, compared to the commonly applied semicrystalline polymer poly(3-hexylthiophene) (P3HT). This study reports the optimisation of TQ1:PC71BM (phenyl C71 butyric acid methyl ester) NP-OPV device performance by the application of mild thermal annealing treatments in the range of the Tg (sub-Tg and post-Tg), both in the active layer drying stage and post-cathode deposition annealing stage of device fabrication, and an in-depth study of the effect of these treatments on nanoparticle film morphology. Finally and in addition, we report a type of morphological evolution in nanoparticle films for OPV active layers that has not previously been observed, that of PC71BM nano-pathway formation between dispersed PC71BM-rich nanoparticle cores, which have the benefit of making the bulk film more conducive to charge percolation and extraction.},
doi = {10.1016/j.nanoen.2015.11.021},
journal = {Nano Energy},
number = ,
volume = 19,
place = {United States},
year = {Thu Nov 26 00:00:00 EST 2015},
month = {Thu Nov 26 00:00:00 EST 2015}
}

Journal Article:

Citation Metrics:
Cited by: 68 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A polymer tandem solar cell with 10.6% power conversion efficiency
journal, February 2013

  • You, Jingbi; Dou, Letian; Yoshimura, Ken
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2411

High Efficiency Polymer Solar Cells with Long Operating Lifetimes
journal, April 2011

  • Peters, Craig H.; Sachs-Quintana, I. T.; Kastrop, John P.
  • Advanced Energy Materials, Vol. 1, Issue 4
  • DOI: 10.1002/aenm.201100138

Halogen-free solvent processing for sustainable development of high efficiency organic solar cells
journal, December 2012


Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells
journal, January 2013

  • Chueh, Chu-Chen; Yao, Kai; Yip, Hin-Lap
  • Energy & Environmental Science, Vol. 6, Issue 11
  • DOI: 10.1039/c3ee41915k

High performance bulk-heterojunction organic solar cells fabricated with non-halogenated solvent processing
journal, September 2011


Solubility Based Identification of Green Solvents for Small Molecule Organic Solar Cells
journal, November 2013

  • Burgués-Ceballos, Ignasi; Machui, Florian; Min, Jie
  • Advanced Functional Materials, Vol. 24, Issue 10
  • DOI: 10.1002/adfm.201301509

Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods
journal, April 2011

  • Andersen, Thomas R.; Larsen-Olsen, Thue T.; Andreasen, Birgitta
  • ACS Nano, Vol. 5, Issue 5
  • DOI: 10.1021/nn200933r

Nano-domain behaviour in P3HT:PCBM nanoparticles, relating material properties to morphological changes
journal, October 2013


The effect of polymer molecular weight on P3HT:PCBM nanoparticulate organic photovoltaic device performance
journal, September 2014


A multilayered approach to polyfluorene water-based organic photovoltaics
journal, July 2012


Relation between Photoactive Layer Thickness, 3D Morphology, and Device Performance in P3HT/PCBM Bulk-Heterojunction Solar Cells
journal, October 2009

  • van Bavel, Svetlana; Sourty, Erwan; de With, Gijsbertus
  • Macromolecules, Vol. 42, Issue 19, p. 7396-7403
  • DOI: 10.1021/ma900817t

Controlling Morphology in Polymer–Fullerene Mixtures
journal, January 2008


Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology
journal, October 2005

  • Ma, W.; Yang, C.; Gong, X.
  • Advanced Functional Materials, Vol. 15, Issue 10, p. 1617-1622
  • DOI: 10.1002/adfm.200500211

On the morphology of polymer-based photovoltaics
journal, March 2012

  • Liu, Feng; Gu, Yu; Jung, Jae Woong
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 50, Issue 15
  • DOI: 10.1002/polb.23063

Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions
journal, December 1995


Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells
journal, January 2013

  • Duan, Chunhui; Zhang, Kai; Zhong, Chengmei
  • Chemical Society Reviews, Vol. 42, Issue 23
  • DOI: 10.1039/c3cs60200a

Eco-Friendly Fabrication of 4% Efficient Organic Solar Cells from Surfactant-Free P3HT:ICBA Nanoparticle Dispersions
journal, September 2014

  • Gärtner, Stefan; Christmann, Marco; Sankaran, Sivaramakrishnan
  • Advanced Materials, Vol. 26, Issue 38
  • DOI: 10.1002/adma.201402360

The role of miscibility in polymer:fullerene nanoparticulate organic photovoltaic devices
journal, September 2013


On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability
journal, March 2015


Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells
journal, March 2007

  • Bertho, Sabine; Haeldermans, Ilse; Swinnen, Ann
  • Solar Energy Materials and Solar Cells, Vol. 91, Issue 5
  • DOI: 10.1016/j.solmat.2006.10.008

Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells
journal, July 2008

  • Bertho, Sabine; Janssen, Griet; Cleij, Thomas J.
  • Solar Energy Materials and Solar Cells, Vol. 92, Issue 7, p. 753-760
  • DOI: 10.1016/j.solmat.2008.01.006

Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices
journal, February 2004

  • Yang, Xiaoniu; van Duren, Jeroen K. J.; Janssen, René A. J.
  • Macromolecules, Vol. 37, Issue 6
  • DOI: 10.1021/ma035620+

Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend
journal, April 2014

  • Lindqvist, Camilla; Bergqvist, Jonas; Bäcke, Olof
  • Applied Physics Letters, Vol. 104, Issue 15
  • DOI: 10.1063/1.4870997

Consensus stability testing protocols for organic photovoltaic materials and devices
journal, May 2011

  • Reese, Matthew O.; Gevorgyan, Suren A.; Jørgensen, Mikkel
  • Solar Energy Materials and Solar Cells, Vol. 95, Issue 5
  • DOI: 10.1016/j.solmat.2011.01.036

Optimization of the Bulk Heterojunction Composition for Enhanced Photovoltaic Properties: Correlation between the Molecular Weight of the Semiconducting Polymer and Device Performance
journal, November 2011

  • Nicolet, Célia; Deribew, Dargie; Renaud, Cedric
  • The Journal of Physical Chemistry B, Vol. 115, Issue 44
  • DOI: 10.1021/jp207669j

Determining the structural motif of P3HT:PCBM nanoparticulate organic photovoltaic devices
journal, March 2013


An Easily Synthesized Blue Polymer for High-Performance Polymer Solar Cells
journal, September 2010

  • Wang, Ergang; Hou, Lintao; Wang, Zhongqiang
  • Advanced Materials, Vol. 22, Issue 46, p. 5240-5244
  • DOI: 10.1002/adma.201002225

New quinoxaline and pyridopyrazine-based polymers for solution-processable photovoltaics
journal, October 2012


Sub-glass transition annealing enhances polymer solar cell performance
journal, January 2014

  • Bergqvist, Jonas; Lindqvist, Camilla; Bäcke, Olof
  • J. Mater. Chem. A, Vol. 2, Issue 17
  • DOI: 10.1039/C3TA14165A

Facile Monitoring of Fullerene Crystallization in Polymer Solar Cell Blends by UV-vis Spectroscopy
journal, February 2014

  • Lindqvist, Camilla; Wang, Ergang; Andersson, Mats R.
  • Macromolecular Chemistry and Physics, Vol. 215, Issue 6
  • DOI: 10.1002/macp.201300717

Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales
journal, May 2011


Semiconducting Polymer Nanospheres in Aqueous Dispersion Prepared by a Miniemulsion Process
journal, May 2002


Stability study of quinoxaline and pyrido pyrazine based co-polymers for solar cell applications
journal, November 2014


In Situ Characterization of Polymer–Fullerene Bilayer Stability
journal, January 2015

  • Leman, Deborah; Kelly, Mary Allison; Ness, Stuart
  • Macromolecules, Vol. 48, Issue 2
  • DOI: 10.1021/ma5021227

The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells
journal, July 2014

  • Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05695

Molecular weight dependent bimolecular recombination in organic solar cells
journal, August 2014

  • Philippa, Bronson; Stolterfoht, Martin; White, Ronald D.
  • The Journal of Chemical Physics, Vol. 141, Issue 5
  • DOI: 10.1063/1.4891369

Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC 70 BM blend
journal, January 2015

  • Hansson, Rickard; Ericsson, Leif K. E.; Holmes, Natalie P.
  • Journal of Materials Chemistry A, Vol. 3, Issue 13
  • DOI: 10.1039/C5TA00683J

Nucleation-limited fullerene crystallisation in a polymer–fullerene bulk-heterojunction blend
journal, January 2013

  • Lindqvist, Camilla; Sanz-Velasco, Anke; Wang, Ergang
  • Journal of Materials Chemistry A, Vol. 1, Issue 24
  • DOI: 10.1039/c3ta11018d

Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene-Quinoxaline Copolymer
journal, February 2013

  • Wang, Ergang; Bergqvist, Jonas; Vandewal, Koen
  • Advanced Energy Materials, Vol. 3, Issue 6
  • DOI: 10.1002/aenm.201201019

Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source
journal, February 2003

  • Kilcoyne, A. L. D.; Tyliszczak, T.; Steele, W. F.
  • Journal of Synchrotron Radiation, Vol. 10, Issue 2
  • DOI: 10.1107/S0909049502017739

Works referencing / citing this record:

Aqueous Nanoparticle Polymer Solar Cells: Effects of Surfactant Concentration and Processing on Device Performance
journal, April 2017

  • Colberts, Fallon J. M.; Wienk, Martijn M.; Janssen, René A. J.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 15
  • DOI: 10.1021/acsami.7b00557

Optimisation of purification techniques for the preparation of large-volume aqueous solar nanoparticle inks for organic photovoltaics
journal, February 2018

  • Almyahi, Furqan; Andersen, Thomas R.; Cooling, Nathan A.
  • Beilstein Journal of Nanotechnology, Vol. 9
  • DOI: 10.3762/bjnano.9.60