skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations

Abstract

Progress has been rapid in increasing the efficiency of energy conversion in nanoparticles. However, extraction of the photo-generated charge carriers remains challenging. Encouragingly, the charge mobility has been improved recently by driving nanoparticle (NP) films across the metal-insulator transition (MIT). To simulate MIT in NP films, we developed a hierarchical Kinetic Monte Carlo transport model. Electrons transfer between neighboring NPs via activated hopping when the NP energies differ by more than an overlap energy, but transfer by a non-activated quantum delocalization, if the NP energies are closer than the overlap energy. As the overlap energy increases, emerging percolating clusters support a metallic transport across the entire film. We simulated the evolution of the temperature-dependent electron mobility. We analyzed our data in terms of two candidate models of the MIT: (a) as a Quantum Critical Transition, signaled by an effective gap going to zero; and (b) as a Quantum Percolation Transition, where a sample-spanning metallic percolation path is formed as the fraction of the hopping bonds in the transport paths is going to zero. We found that the Quantum Percolation Transition theory provides a better description of the MIT. We also observed an anomalously low gap region next to the MIT.more » We discuss the relevance of our results in the light of recent experimental measurements.« less

Authors:
 [1]; ORCiD logo [2];  [1]
  1. Univ. of California, Davis, CA (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE
OSTI Identifier:
1392500
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Qu, Luman, Vörös, Márton, and Zimanyi, Gergely T. Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations. United States: N. p., 2017. Web. doi:10.1038/s41598-017-06497-1.
Qu, Luman, Vörös, Márton, & Zimanyi, Gergely T. Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations. United States. doi:10.1038/s41598-017-06497-1.
Qu, Luman, Vörös, Márton, and Zimanyi, Gergely T. Tue . "Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations". United States. doi:10.1038/s41598-017-06497-1. https://www.osti.gov/servlets/purl/1392500.
@article{osti_1392500,
title = {Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations},
author = {Qu, Luman and Vörös, Márton and Zimanyi, Gergely T.},
abstractNote = {Progress has been rapid in increasing the efficiency of energy conversion in nanoparticles. However, extraction of the photo-generated charge carriers remains challenging. Encouragingly, the charge mobility has been improved recently by driving nanoparticle (NP) films across the metal-insulator transition (MIT). To simulate MIT in NP films, we developed a hierarchical Kinetic Monte Carlo transport model. Electrons transfer between neighboring NPs via activated hopping when the NP energies differ by more than an overlap energy, but transfer by a non-activated quantum delocalization, if the NP energies are closer than the overlap energy. As the overlap energy increases, emerging percolating clusters support a metallic transport across the entire film. We simulated the evolution of the temperature-dependent electron mobility. We analyzed our data in terms of two candidate models of the MIT: (a) as a Quantum Critical Transition, signaled by an effective gap going to zero; and (b) as a Quantum Percolation Transition, where a sample-spanning metallic percolation path is formed as the fraction of the hopping bonds in the transport paths is going to zero. We found that the Quantum Percolation Transition theory provides a better description of the MIT. We also observed an anomalously low gap region next to the MIT. We discuss the relevance of our results in the light of recent experimental measurements.},
doi = {10.1038/s41598-017-06497-1},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Charge generation in organic photovoltaics: a review of theory and computation
journal, January 2016

  • Pelzer, Kenley M.; Darling, Seth B.
  • Molecular Systems Design & Engineering, Vol. 1, Issue 1
  • DOI: 10.1039/C6ME00005C

Perspective on the Prospects of a Carrier Multiplication Nanocrystal Solar Cell
journal, May 2011

  • Nair, Gautham; Chang, Liang-Yi; Geyer, Scott M.
  • Nano Letters, Vol. 11, Issue 5
  • DOI: 10.1021/nl200798x

Germanium nanoparticles with non-diamond core structures for solar energy conversion
journal, January 2014

  • Vörös, Márton; Wippermann, Stefan; Somogyi, Bálint
  • Journal of Materials Chemistry A, Vol. 2, Issue 25
  • DOI: 10.1039/c4ta01543f

Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics
journal, September 2012


Emergence of colloidal quantum-dot light-emitting technologies
journal, December 2012

  • Shirasaki, Yasuhiro; Supran, Geoffrey J.; Bawendi, Moungi G.
  • Nature Photonics, Vol. 7, Issue 1
  • DOI: 10.1038/nphoton.2012.328

PbSe Quantum Dot Field-Effect Transistors with Air-Stable Electron Mobilities above 7 cm 2 V –1 s –1
journal, March 2013

  • Liu, Yao; Tolentino, Jason; Gibbs, Markelle
  • Nano Letters, Vol. 13, Issue 4
  • DOI: 10.1021/nl304753n

Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study
journal, January 1993


Quantum dot field effect transistors
journal, September 2013


Prospects of Nanoscience with Nanocrystals
journal, January 2015

  • Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn506223h

Electron and hole addition energies in PbSe quantum dots
journal, July 2007


Continuous quantum phase transitions
journal, January 1997


Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime
journal, May 2014

  • Zhitomirsky, David; Voznyy, Oleksandr; Levina, Larissa
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4803

Hopping transport on a fractal: ac conductivity of porous silicon
journal, January 1995


Absence of Diffusion in Certain Random Lattices
journal, March 1958


Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids
journal, September 2011

  • Talgorn, Elise; Gao, Yunan; Aerts, Michiel
  • Nature Nanotechnology, Vol. 6, Issue 11
  • DOI: 10.1038/nnano.2011.159

Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell
journal, December 2011


Weak localization and coulomb interaction in disordered systems
journal, September 1984

  • Finkel'stein, A. M.
  • Zeitschrift f�r Physik B Condensed Matter, Vol. 56, Issue 3
  • DOI: 10.1007/BF01304171

Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details
journal, January 2005

  • Donev, Aleksandar; Torquato, Salvatore; Stillinger, Frank H.
  • Journal of Computational Physics, Vol. 202, Issue 2
  • DOI: 10.1016/j.jcp.2004.08.014

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters
journal, October 2008

  • Kamat, Prashant V.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 48
  • DOI: 10.1021/jp806791s

Defect States and Charge Transport in Quantum Dot Solids
journal, January 2017


Carrier Multiplication in Semiconductor Nanocrystals: Influence of Size, Shape, and Composition
journal, March 2013

  • Padilha, Lazaro A.; Stewart, John T.; Sandberg, Richard L.
  • Accounts of Chemical Research, Vol. 46, Issue 6
  • DOI: 10.1021/ar300228x

Excitonic and Quasiparticle Gaps in Si Nanocrystals
journal, March 2000


Charge transport and localization in atomically coherent quantum dot solids
journal, February 2016

  • Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4576

Disordered electronic systems
journal, April 1985


Theory of a field-effect transistor based on a semiconductor nanocrystal array
journal, June 2014


Charge Transport in a Quantum Dot Supercrystal
journal, October 2011

  • Chu, Iek-Heng; Radulaski, Marina; Vukmirovic, Nenad
  • The Journal of Physical Chemistry C, Vol. 115, Issue 43
  • DOI: 10.1021/jp206526s

Increasing impact ionization rates in Si nanoparticles through surface engineering: A density functional study
journal, April 2013


Propagation of Structural Disorder in Epitaxially Connected Quantum Dot Solids from Atomic to Micron Scale
journal, August 2016


Charge Transport in Nanostructured Materials: Implementation and Verification of Constrained Density Functional Theory
journal, April 2017

  • Goldey, Matthew B.; Brawand, Nicholas P.; Vörös, Márton
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 6
  • DOI: 10.1021/acs.jctc.7b00088

Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions
journal, March 1979


Hydrogen Treatment as a Detergent of Electronic Trap States in Lead Chalcogenide Nanoparticles
journal, November 2016


Random walk models of charge transfer and transport in dye sensitized systems
journal, July 2004


PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
journal, October 2005


Effects of Disorder on Electronic Properties of Nanocrystal Assemblies
journal, January 2015

  • Yang, Jun; Wise, Frank W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 6
  • DOI: 10.1021/jp5098469

A new algorithm for Monte Carlo simulation of Ising spin systems
journal, January 1975


Variable Range Hopping Conduction in Semiconductor Nanocrystal Solids
journal, May 2004


Electron transport in quantum dot solids: Monte Carlo simulations of the effects of shell filling, Coulomb repulsions, and site disorder
journal, February 2007


Substitutional doping in nanocrystal superlattices
journal, August 2015

  • Cargnello, Matteo; Johnston-Peck, Aaron C.; Diroll, Benjamin T.
  • Nature, Vol. 524, Issue 7566
  • DOI: 10.1038/nature14872

Interaction Effects in Disordered Fermi Systems in Two Dimensions
journal, May 1980


Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold
journal, August 1976


Dielectric Constants of Silicon Quantum Dots
journal, August 1994


Activating Carrier Multiplication in PbSe Quantum Dot Solids by Infilling with Atomic Layer Deposition
journal, May 2013

  • ten Cate, Sybren; Liu, Yao; Suchand Sandeep, C. S.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 11
  • DOI: 10.1021/jz4007492

Coulomb gap and low temperature conductivity of disordered systems
journal, February 1975


Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

High-Pressure Core Structures of Si Nanoparticles for Solar Energy Conversion
journal, January 2013


Third Generation Photovoltaics based on Multiple Exciton Generation in Quantum Confined Semiconductors
journal, October 2012

  • Beard, Matthew C.; Luther, Joseph M.; Semonin, Octavi E.
  • Accounts of Chemical Research, Vol. 46, Issue 6
  • DOI: 10.1021/ar3001958

Mott and Efros-Shklovskii Variable Range Hopping in CdSe Quantum Dots Films
journal, August 2010

  • Liu, Heng; Pourret, Alexandre; Guyot-Sionnest, Philippe
  • ACS Nano, Vol. 4, Issue 9
  • DOI: 10.1021/nn101376u

Colloidal quantum dot ligand engineering for high performance solar cells
journal, January 2016

  • Wang, Ruili; Shang, Yuequn; Kanjanaboos, Pongsakorn
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C5EE03887A

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Quantum dot PbS 0.9 Se 0.1 /TiO 2 heterojunction solar cells
journal, September 2012


Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation
journal, June 2016


Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays
journal, April 2011

  • Lee, Jong-Soo; Kovalenko, Maksym V.; Huang, Jing
  • Nature Nanotechnology, Vol. 6, Issue 6
  • DOI: 10.1038/nnano.2011.46

Dark and Photo-Conductivity in Ordered Array of Nanocrystals
journal, October 2013

  • Shabaev, Andrew; Efros, Alexander L.; Efros, Alexei L.
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403033f

Electronic structure and optical properties of PbS and PbSe quantum dots
journal, January 1997

  • Kang, Inuk; Wise, Frank W.
  • Journal of the Optical Society of America B, Vol. 14, Issue 7
  • DOI: 10.1364/JOSAB.14.001632

Monte Carlo modeling of transport in PbSe nanocrystal films
journal, November 2013

  • Carbone, I.; Carter, S. A.; Zimanyi, G. T.
  • Journal of Applied Physics, Vol. 114, Issue 19
  • DOI: 10.1063/1.4831674

Temperature-Dependent Hall and Field-Effect Mobility in Strongly Coupled All-Inorganic Nanocrystal Arrays
journal, January 2014

  • Jang, Jaeyoung; Liu, Wenyong; Son, Jae Sung
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl403889u

Metal–insulator transition in films of doped semiconductor nanocrystals
journal, November 2015

  • Chen, Ting; Reich, K. V.; Kramer, Nicolaas J.
  • Nature Materials, Vol. 15, Issue 3
  • DOI: 10.1038/nmat4486

Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics
journal, April 2012

  • Choi, Ji-Hyuk; Fafarman, Aaron T.; Oh, Soong Ju
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl301104z

Quantum dot solar cells
journal, April 2002


Electrical Transport in Colloidal Quantum Dot Films
journal, April 2012

  • Guyot-Sionnest, Philippe
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 9
  • DOI: 10.1021/jz300048y