DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes

Abstract

Increases in energy demand and in chemical production, together with the rise in CO2 levels in the atmosphere, motivate the development of renewable energy sources. Electrochemical CO2 reduction to fuels and chemicals is an appealing alternative to traditional pathways to fuels and chemicals due to its intrinsic ability to couple to solar and wind energy sources. Formate (HCOO) is a key chemical for many industries; however, greater understanding is needed regarding the mechanism and key intermediates for HCOO production. This work reports a joint experimental and theoretical investigation of the electrochemical reduction of CO2 to HCOO on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO. Our results show that Sn electrodes produce HCOO, carbon monoxide (CO), and hydrogen (H2) across a range of potentials and that HCOO production becomes favored at potentials more negative than –0.8 V vs RHE, reaching a maximum Faradaic efficiency of 70% at –0.9 V vs RHE. Scaling relations for Sn and other transition metals are examined using experimental current densities and density functional theory (DFT) binding energies. While *COOH was determined to be the key intermediate for CO production on metal surfaces, we suggest that it is unlikely tomore » be the primary intermediate for HCOO production. Instead, *OCHO is suggested to be the key intermediate for the CO2RR to HCOO transformation, and Sn’s optimal *OCHO binding energy supports its high selectivity for HCOO. Lastly, these results suggest that oxygen-bound intermediates are critical to understand the mechanism of CO2 reduction to HCOO on metal surfaces.« less

Authors:
 [1];  [1];  [2];  [1];  [2];  [2]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1390311
Grant/Contract Number:  
AC02-76SF00515; 1066515
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 7; Journal Issue: 7; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; carbon monoxide; CO2 reduction; electrocatalysis; formate; Sn; tin

Citation Formats

Feaster, Jeremy T., Shi, Chuan, Cave, Etosha R., Hatsukade, Toru, Abram, David N., Kuhl, Kendra P., Hahn, Christopher, Nørskov, Jens K., and Jaramillo, Thomas F. Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. United States: N. p., 2017. Web. doi:10.1021/acscatal.7b00687.
Feaster, Jeremy T., Shi, Chuan, Cave, Etosha R., Hatsukade, Toru, Abram, David N., Kuhl, Kendra P., Hahn, Christopher, Nørskov, Jens K., & Jaramillo, Thomas F. Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. United States. https://doi.org/10.1021/acscatal.7b00687
Feaster, Jeremy T., Shi, Chuan, Cave, Etosha R., Hatsukade, Toru, Abram, David N., Kuhl, Kendra P., Hahn, Christopher, Nørskov, Jens K., and Jaramillo, Thomas F. Thu . "Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes". United States. https://doi.org/10.1021/acscatal.7b00687. https://www.osti.gov/servlets/purl/1390311.
@article{osti_1390311,
title = {Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes},
author = {Feaster, Jeremy T. and Shi, Chuan and Cave, Etosha R. and Hatsukade, Toru and Abram, David N. and Kuhl, Kendra P. and Hahn, Christopher and Nørskov, Jens K. and Jaramillo, Thomas F.},
abstractNote = {Increases in energy demand and in chemical production, together with the rise in CO2 levels in the atmosphere, motivate the development of renewable energy sources. Electrochemical CO2 reduction to fuels and chemicals is an appealing alternative to traditional pathways to fuels and chemicals due to its intrinsic ability to couple to solar and wind energy sources. Formate (HCOO–) is a key chemical for many industries; however, greater understanding is needed regarding the mechanism and key intermediates for HCOO– production. This work reports a joint experimental and theoretical investigation of the electrochemical reduction of CO2 to HCOO– on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO–. Our results show that Sn electrodes produce HCOO–, carbon monoxide (CO), and hydrogen (H2) across a range of potentials and that HCOO– production becomes favored at potentials more negative than –0.8 V vs RHE, reaching a maximum Faradaic efficiency of 70% at –0.9 V vs RHE. Scaling relations for Sn and other transition metals are examined using experimental current densities and density functional theory (DFT) binding energies. While *COOH was determined to be the key intermediate for CO production on metal surfaces, we suggest that it is unlikely to be the primary intermediate for HCOO– production. Instead, *OCHO is suggested to be the key intermediate for the CO2RR to HCOO– transformation, and Sn’s optimal *OCHO binding energy supports its high selectivity for HCOO–. Lastly, these results suggest that oxygen-bound intermediates are critical to understand the mechanism of CO2 reduction to HCOO– on metal surfaces.},
doi = {10.1021/acscatal.7b00687},
journal = {ACS Catalysis},
number = 7,
volume = 7,
place = {United States},
year = {Thu Jun 22 00:00:00 EDT 2017},
month = {Thu Jun 22 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 539 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Modern Global Climate Change
journal, December 2003


Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet
journal, November 2002


Carbon Dioxide Capture: Prospects for New Materials
journal, July 2010

  • D'Alessandro, Deanna M.; Smit, Berend; Long, Jeffrey R.
  • Angewandte Chemie International Edition, Vol. 49, Issue 35, p. 6058-6082
  • DOI: 10.1002/anie.201000431

Recent developments on carbon capture and storage: An overview
journal, September 2011

  • Pires, J. C. M.; Martins, F. G.; Alvim-Ferraz, M. C. M.
  • Chemical Engineering Research and Design, Vol. 89, Issue 9
  • DOI: 10.1016/j.cherd.2011.01.028

Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction
journal, December 2010

  • Whipple, Devin T.; Kenis, Paul J. A.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 24, p. 3451-3458
  • DOI: 10.1021/jz1012627

Catalysis of the electrochemical reduction of carbon dioxide
journal, January 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35360A

A selective and efficient electrocatalyst for carbon dioxide reduction
journal, January 2014

  • Lu, Qi; Rosen, Jonathan; Zhou, Yang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4242

The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility
journal, September 2011


Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media
journal, August 1994

  • Hori, Yoshio; Wakebe, Hidetoshi; Tsukamoto, Toshio
  • Electrochimica Acta, Vol. 39, Issue 11-12, p. 1833-1839
  • DOI: 10.1016/0013-4686(94)85172-7

A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper
journal, August 2006


Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

Electrochemical reduction of carbon dioxide on flat metallic cathodes
journal, January 1997

  • Jitaru, M.; Lowy, D. A.; Toma, M.
  • Journal of Applied Electrochemistry, Vol. 27, Issue 8, p. 875-889
  • DOI: 10.1023/A:1018441316386

Tin Oxide Dependence of the CO 2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts
journal, January 2012

  • Chen, Yihong; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja2108799

Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode
journal, July 2011

  • Machunda, Revocatus L.; Ju, HyungKuK; Lee, Jaeyoung
  • Current Applied Physics, Vol. 11, Issue 4
  • DOI: 10.1016/j.cap.2011.01.003

Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device
journal, February 2013


Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy
journal, January 2012

  • Vesborg, Peter C. K.; Jaramillo, Thomas F.
  • RSC Advances, Vol. 2, Issue 21
  • DOI: 10.1039/c2ra20839c

Effect of solution pH on CO: formate formation rates during electrochemical reduction of aqueous CO2 at Sn cathodes
journal, September 2014


Morphological Stability of Sn Electrode for Electrochemical Conversion of CO2
journal, August 2013


Electrolytic Reduction of Carbon Dioxide at Mercury Electrode in Aqueous Solution
journal, March 1982

  • Hori, Yoshio; Suzuki, Shin
  • Bulletin of the Chemical Society of Japan, Vol. 55, Issue 3
  • DOI: 10.1246/bcsj.55.660

Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode
journal, December 1969


How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
journal, January 2010

  • Peterson, Andrew A.; Abild-Pedersen, Frank; Studt, Felix
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/c0ee00071j

Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid
journal, December 2015


New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
journal, January 2012

  • Kuhl, Kendra P.; Cave, Etosha R.; Abram, David N.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21234j

Insights into the electrocatalytic reduction of CO 2 on metallic silver surfaces
journal, January 2014

  • Hatsukade, Toru; Kuhl, Kendra P.; Cave, Etosha R.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
  • DOI: 10.1039/C4CP00692E

State of metallic phase in PtSn/Al2O3 catalysts prepared by different deposition techniques
journal, July 1986


Activity Descriptors for CO 2 Electroreduction to Methane on Transition-Metal Catalysts
journal, January 2012

  • Peterson, Andrew A.; Nørskov, Jens K.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 2
  • DOI: 10.1021/jz201461p

Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
journal, April 1990


Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
journal, March 1999


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate
journal, January 2014

  • Zhang, Sheng; Kang, Peng; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 136, Issue 5
  • DOI: 10.1021/ja4113885

Electrochemical Reduction of Carbon Dioxide I. Effects of the Electrolyte on the Selectivity and Activity with Sn Electrode
journal, January 2012

  • Wu, Jingjie; Risalvato, Frank G.; Ke, Fu-Sheng
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.049207jes

Mechanistic Insights into the Reduction of CO 2 on Tin Electrodes using in Situ ATR-IR Spectroscopy
journal, March 2015


Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces
journal, January 2014

  • Shi, Chuan; Hansen, Heine A.; Lausche, Adam C.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 10
  • DOI: 10.1039/c3cp54822h

Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces
journal, August 2011


Electric Field Effects in Electrochemical CO 2 Reduction
journal, September 2016


Monitoring the Chemical State of Catalysts for CO 2 Electroreduction: An In Operando Study
journal, November 2015


Works referencing / citing this record:

High Selectivity Towards Formate Production by Electrochemical Reduction of Carbon Dioxide at Copper–Bismuth Dendrites
journal, November 2018


Electrochemical Conversion of CO 2 to Syngas with Controllable CO/H 2 Ratios over Co and Ni Single‐Atom Catalysts
journal, January 2020


Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction
journal, October 2018

  • Birhanu, Mulatu Kassie; Tsai, Meng-Che; Kahsay, Amaha Woldu
  • Advanced Materials Interfaces, Vol. 5, Issue 24
  • DOI: 10.1002/admi.201800919

Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO 2 electroreduction
journal, January 2018

  • Zu, Meng Yang; Zhang, Le; Wang, Chongwu
  • Journal of Materials Chemistry A, Vol. 6, Issue 35
  • DOI: 10.1039/c8ta05355c

Electrocatalytic conversion of carbon dioxide to formic acid over nanosized Cu 6 Sn 5 intermetallic compounds with a SnO 2 shell layer
journal, January 2019

  • Gunji, Takao; Ochiai, Hiroya; Isawa, Yu
  • Catalysis Science & Technology, Vol. 9, Issue 23
  • DOI: 10.1039/c9cy01540j

Electrochemical Carbon Dioxide Splitting
journal, February 2019


2D Metal Oxyhalide-Derived Catalysts for Efficient CO 2 Electroreduction
journal, August 2018

  • García de Arquer, F. Pelayo; Bushuyev, Oleksandr S.; De Luna, Phil
  • Advanced Materials, Vol. 30, Issue 38
  • DOI: 10.1002/adma.201802858

Bronze alloys with tin surface sites for selective electrochemical reduction of CO 2
journal, January 2018

  • Vasileff, Anthony; Xu, Chaochen; Ge, Lei
  • Chemical Communications, Vol. 54, Issue 99
  • DOI: 10.1039/c8cc08066f

A Co–N 4 moiety embedded into graphene as an efficient single-atom-catalyst for NO electrochemical reduction: a computational study
journal, January 2018

  • Wang, Zhongxu; Zhao, Jingxiang; Wang, Jingyang
  • Journal of Materials Chemistry A, Vol. 6, Issue 17
  • DOI: 10.1039/c8ta00875b

Structure‐Sensitivity and Electrolyte Effects in CO 2 Electroreduction: From Model Studies to Applications
journal, June 2019

  • Sebastián‐Pascual, Paula; Mezzavilla, Stefano; Stephens, Ifan E. L.
  • ChemCatChem, Vol. 11, Issue 16
  • DOI: 10.1002/cctc.201900552

Design of naturally derived lead phytate as an electrocatalyst for highly efficient CO 2 reduction to formic acid
journal, January 2018

  • Wu, Haoran; Song, Jinliang; Xie, Chao
  • Green Chemistry, Vol. 20, Issue 20
  • DOI: 10.1039/c8gc02457j

Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective
journal, January 2018

  • Zhou, Jun-Hao; Zhang, Ya-Wen
  • Reaction Chemistry & Engineering, Vol. 3, Issue 5
  • DOI: 10.1039/c8re00111a

The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction
journal, March 2018


Progress in development of electrocatalyst for CO 2 conversion to selective CO production
journal, March 2020

  • Nguyen, Dang Le Tri; Kim, Younghye; Hwang, Yun Jeong
  • Carbon Energy, Vol. 2, Issue 1
  • DOI: 10.1002/cey2.27

Formic Acid Manufacture: Carbon Dioxide Utilization Alternatives
journal, June 2018

  • Rumayor, Marta; Dominguez-Ramos, Antonio; Irabien, Angel
  • Applied Sciences, Vol. 8, Issue 6
  • DOI: 10.3390/app8060914

Orbital Interactions in Bi-Sn Bimetallic Electrocatalysts for Highly Selective Electrochemical CO 2 Reduction toward Formate Production
journal, September 2018

  • Wen, Guobin; Lee, Dong Un; Ren, Bohua
  • Advanced Energy Materials, Vol. 8, Issue 31
  • DOI: 10.1002/aenm.201802427

Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO 2 Reduction
journal, August 2018

  • Cao, Zhi; Zacate, Samson B.; Sun, Xiaodong
  • Angewandte Chemie, Vol. 130, Issue 39
  • DOI: 10.1002/ange.201805696

Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals
journal, March 2019


Insight into the Formation and Transfer Process of the First Intermediate of CO 2 Reduction over Ag‐Decorated Dendritic Cu
journal, October 2019


Designing materials for electrochemical carbon dioxide recycling
journal, July 2019


On the Mechanism of Carbon Dioxide Reduction on Sn-Based Electrodes: Insights into the Role of Oxide Surfaces
journal, July 2019

  • Damas, Giane B.; Miranda, Caetano R.; Sgarbi, Ricardo
  • Catalysts, Vol. 9, Issue 8
  • DOI: 10.3390/catal9080636

Strategies for Designing Nanoparticles for Electro‐ and Photocatalytic CO 2 Reduction
journal, December 2019

  • Choi, Ji Yong; Choi, Woong; Park, Joon Woo
  • Chemistry – An Asian Journal, Vol. 15, Issue 2
  • DOI: 10.1002/asia.201901533

Conversion of Carbon Dioxide into Formic Acid
book, November 2019

  • Fegade, Umesh; Jethave, Ganesh
  • Conversion of Carbon Dioxide into Hydrocarbons Vol. 2 Technology, p. 91-110
  • DOI: 10.1007/978-3-030-28638-5_4

On the origin of the elusive first intermediate of CO 2 electroreduction
journal, September 2018

  • Chernyshova, Irina V.; Somasundaran, Ponisseril; Ponnurangam, Sathish
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 40
  • DOI: 10.1073/pnas.1802256115

Electrochemical Reduction of CO 2 on Nitrogen‐Doped Carbon Catalysts With and Without Iron
journal, August 2019

  • Silva, Wanderson O.; Silva, Gabriel C.; Webster, Richard F.
  • ChemElectroChem, Vol. 6, Issue 17
  • DOI: 10.1002/celc.201901144

Advances and challenges in electrochemical CO 2 reduction processes: an engineering and design perspective looking beyond new catalyst materials
journal, January 2020

  • Garg, Sahil; Li, Mengran; Weber, Adam Z.
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta13298h

Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials
journal, December 2018


Chelating N-Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO 2 Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry
journal, March 2018

  • Cao, Zhi; Derrick, Jeffrey S.; Xu, Jun
  • Angewandte Chemie International Edition, Vol. 57, Issue 18
  • DOI: 10.1002/anie.201800367

Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate
journal, September 2019


Electrochemical CO 2 Reduction: A Classification Problem
journal, October 2017


Zn nanosheets coated with a ZnS subnanometer layer for effective and durable CO 2 reduction
journal, January 2019

  • Li, Chenglong; Shen, Gurong; Zhang, Rui
  • Journal of Materials Chemistry A, Vol. 7, Issue 4
  • DOI: 10.1039/c8ta10799h

Electrocatalytic Reduction of Gaseous CO 2 to CO on Sn/Cu‐Nanofiber‐Based Gas Diffusion Electrodes
journal, July 2019


Conversion of Carbon Dioxide Using Lead/Composite/Oxide Electrode into Formate/Formic Acid
book, January 2020

  • An, Xiaowei; Yoshida, Akihiro; Abudula, Abuliti
  • Conversion of Carbon Dioxide into Hydrocarbons Vol. 1 Catalysis, p. 25-42
  • DOI: 10.1007/978-3-030-28622-4_2

Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction
journal, January 2019

  • Shao, Qi; Wang, Pengtang; Liu, Shangheng
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta07016h

Recent advances in the nanoengineering of electrocatalysts for CO 2 reduction
journal, January 2018

  • Li, Fengwang; MacFarlane, Douglas R.; Zhang, Jie
  • Nanoscale, Vol. 10, Issue 14
  • DOI: 10.1039/c7nr09620h

Recent Progress in the Theoretical Investigation of Electrocatalytic Reduction of CO 2
journal, April 2018

  • Tian, Ziqi; Priest, Chad; Chen, Liang
  • Advanced Theory and Simulations, Vol. 1, Issue 5
  • DOI: 10.1002/adts.201800004

Stepped surface-rich copper fiber felt as an efficient electrocatalyst for the CO 2 RR to formate
journal, January 2018

  • Shen, Sibo; He, Jia; Peng, Xianyun
  • Journal of Materials Chemistry A, Vol. 6, Issue 39
  • DOI: 10.1039/c8ta04758h

Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis
journal, January 2019

  • Handoko, Albertus D.; Steinmann, Stephan N.; Seh, Zhi Wei
  • Nanoscale Horizons, Vol. 4, Issue 4
  • DOI: 10.1039/c9nh00100j

Ultrathin Bismuth Nanosheets as a Highly Efficient CO 2 Reduction Electrocatalyst
journal, January 2018


Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas
journal, December 2019


A mechanistic study of B 36 -supported atomic Au promoted CO 2 electroreduction to formic acid
journal, January 2019

  • Li, Wen-Ying; Zhao, Xiang; Dang, Jing-Shuang
  • Journal of Materials Chemistry A, Vol. 7, Issue 23
  • DOI: 10.1039/c9ta03983j

New aspects of operando Raman spectroscopy applied to electrochemical CO 2 reduction on Cu foams
journal, January 2019

  • Jiang, Shan; Klingan, Katharina; Pasquini, Chiara
  • The Journal of Chemical Physics, Vol. 150, Issue 4
  • DOI: 10.1063/1.5054109

Electrochemical Conversion of CO 2 to Syngas with Controllable CO/H 2 Ratios over Co and Ni Single-Atom Catalysts
journal, January 2020

  • He, Qun; Liu, Daobin; Lee, Ji Hoon
  • Angewandte Chemie International Edition, Vol. 59, Issue 8
  • DOI: 10.1002/anie.201912719

Lateral Adsorbate Interactions Inhibit HCOO while Promoting CO Selectivity for CO 2 Electrocatalysis on Silver
journal, December 2018

  • Bohra, Divya; Ledezma-Yanez, Isis; Li, Guanna
  • Angewandte Chemie, Vol. 131, Issue 5
  • DOI: 10.1002/ange.201811667

Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO 2 Reduction to Formate
journal, November 2019


Electrochemical CO 2 Reduction on Bimetallic Surface Alloys: Enhanced Selectivity to CO for Co/Au(110) and to H 2 for Sn/Au(110)
journal, May 2019


Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO 2 Reduction
journal, August 2018

  • Cao, Zhi; Zacate, Samson B.; Sun, Xiaodong
  • Angewandte Chemie International Edition, Vol. 57, Issue 39
  • DOI: 10.1002/anie.201805696

Lateral Adsorbate Interactions Inhibit HCOO while Promoting CO Selectivity for CO 2 Electrocatalysis on Silver
journal, January 2019

  • Bohra, Divya; Ledezma‐Yanez, Isis; Li, Guanna
  • Angewandte Chemie International Edition, Vol. 58, Issue 5
  • DOI: 10.1002/anie.201811667

Inside Cover: Electrochemical Conversion of CO 2 to Syngas with Controllable CO/H 2 Ratios over Co and Ni Single‐Atom Catalysts (Angew. Chem. Int. Ed. 8/2020)
journal, February 2020

  • He, Qun; Liu, Daobin; Lee, Ji Hoon
  • Angewandte Chemie International Edition, Vol. 59, Issue 8
  • DOI: 10.1002/anie.202000296

High Pressure Electrochemical Reduction of CO 2 to Formic Acid/Formate: A Comparison between Bipolar Membranes and Cation Exchange Membranes
journal, January 2019

  • Ramdin, Mahinder; Morrison, Andrew R. T.; de Groen, Mariette
  • Industrial & Engineering Chemistry Research, Vol. 58, Issue 5
  • DOI: 10.1021/acs.iecr.8b04944

Theoretical insights into selective electrochemical conversion of carbon dioxide
journal, March 2019


On-Surface Modification of Copper Cathodes by Copper(I)-Catalyzed Azide Alkyne Cycloaddition and CO2 Reduction in Organic Environments
journal, December 2019