skip to main content


Title: Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

Here, we have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e-/Å 2s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower lose rates (ca. 2600 e-/Å 2s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce 3+ versus Ce 4+ cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface.
 [1] ;  [1] ;  [2] ;  [2]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Grant/Contract Number:
Published Article
Journal Name:
Additional Journal Information:
Journal Volume: 176; Journal Issue: C; Journal ID: ISSN 0304-3991
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; aberration-corrected TEM; environmental TEM; electron energy loss spectroscopy; in situ high resolution electron microscopy; epitaxial ceria thin films; yttria-stabilized zirconia substrates
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1373122