skip to main content

DOE PAGESDOE PAGES

Title: Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.
Authors:
 [1] ;  [2] ;  [2] ;  [2] ;  [2] ;  [2] ; ORCiD logo [2] ;  [2] ;  [2] ; ORCiD logo [2] ;  [2] ;  [3]
  1. Stanford Univ., CA (United States); Zhengzhou Univ. (China); Xi'an Jiaotong Univ. (China)
  2. Stanford Univ., CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
Publication Date:
Report Number(s):
SLAC-PUB-17011
Journal ID: ISSN 2041-1723; PII: 537
Grant/Contract Number:
AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Batteries; Chemical engineering
OSTI Identifier:
1380122

Jin, Yang, Zhou, Guangmin, Shi, Feifei, Zhuo, Denys, Zhao, Jie, Liu, Kai, Liu, Yayuan, Zu, Chenxi, Chen, Wei, Zhang, Rufan, Huang, Xuanyi, and Cui, Yi. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. United States: N. p., Web. doi:10.1038/s41467-017-00537-0.
Jin, Yang, Zhou, Guangmin, Shi, Feifei, Zhuo, Denys, Zhao, Jie, Liu, Kai, Liu, Yayuan, Zu, Chenxi, Chen, Wei, Zhang, Rufan, Huang, Xuanyi, & Cui, Yi. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. United States. doi:10.1038/s41467-017-00537-0.
Jin, Yang, Zhou, Guangmin, Shi, Feifei, Zhuo, Denys, Zhao, Jie, Liu, Kai, Liu, Yayuan, Zu, Chenxi, Chen, Wei, Zhang, Rufan, Huang, Xuanyi, and Cui, Yi. 2017. "Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage". United States. doi:10.1038/s41467-017-00537-0. https://www.osti.gov/servlets/purl/1380122.
@article{osti_1380122,
title = {Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage},
author = {Jin, Yang and Zhou, Guangmin and Shi, Feifei and Zhuo, Denys and Zhao, Jie and Liu, Kai and Liu, Yayuan and Zu, Chenxi and Chen, Wei and Zhang, Rufan and Huang, Xuanyi and Cui, Yi},
abstractNote = {Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm–3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L–1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.},
doi = {10.1038/s41467-017-00537-0},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {9}
}

Works referenced in this record:

Progress in Flow Battery Research and Development
journal, June 2011
  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013
  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

Battery Technologies for Large-Scale Stationary Energy Storage
journal, July 2011

Nanostructured sulfur cathodes
journal, January 2013
  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Building better batteries
journal, February 2008
  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013
  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Opportunities and challenges for a sustainable energy future
journal, August 2012
  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011
  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009
  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460