DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

Abstract

Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm–3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L–1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.

Authors:
 [1];  [2];  [2];  [2];  [2];  [2]; ORCiD logo [2];  [2];  [2]; ORCiD logo [2];  [2];  [3]
  1. Stanford Univ., CA (United States); Zhengzhou Univ. (China); Xi'an Jiaotong Univ. (China)
  2. Stanford Univ., CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1380122
Report Number(s):
SLAC-PUB-17011
Journal ID: ISSN 2041-1723; PII: 537
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Batteries; Chemical engineering

Citation Formats

Jin, Yang, Zhou, Guangmin, Shi, Feifei, Zhuo, Denys, Zhao, Jie, Liu, Kai, Liu, Yayuan, Zu, Chenxi, Chen, Wei, Zhang, Rufan, Huang, Xuanyi, and Cui, Yi. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. United States: N. p., 2017. Web. doi:10.1038/s41467-017-00537-0.
Jin, Yang, Zhou, Guangmin, Shi, Feifei, Zhuo, Denys, Zhao, Jie, Liu, Kai, Liu, Yayuan, Zu, Chenxi, Chen, Wei, Zhang, Rufan, Huang, Xuanyi, & Cui, Yi. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. United States. https://doi.org/10.1038/s41467-017-00537-0
Jin, Yang, Zhou, Guangmin, Shi, Feifei, Zhuo, Denys, Zhao, Jie, Liu, Kai, Liu, Yayuan, Zu, Chenxi, Chen, Wei, Zhang, Rufan, Huang, Xuanyi, and Cui, Yi. Wed . "Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage". United States. https://doi.org/10.1038/s41467-017-00537-0. https://www.osti.gov/servlets/purl/1380122.
@article{osti_1380122,
title = {Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage},
author = {Jin, Yang and Zhou, Guangmin and Shi, Feifei and Zhuo, Denys and Zhao, Jie and Liu, Kai and Liu, Yayuan and Zu, Chenxi and Chen, Wei and Zhang, Rufan and Huang, Xuanyi and Cui, Yi},
abstractNote = {Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm–3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L–1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.},
doi = {10.1038/s41467-017-00537-0},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {Wed Sep 06 00:00:00 EDT 2017},
month = {Wed Sep 06 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for Lithium-Sulfur Batteries
journal, July 2014

  • Yuan, Zhe; Peng, Hong-Jie; Huang, Jia-Qi
  • Advanced Functional Materials, Vol. 24, Issue 39
  • DOI: 10.1002/adfm.201401501

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Lithium–antimony–lead liquid metal battery for grid-level energy storage
journal, September 2014


Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification
journal, April 2012

  • Barchasz, Céline; Molton, Florian; Duboc, Carole
  • Analytical Chemistry, Vol. 84, Issue 9
  • DOI: 10.1021/ac2032244

Li–S batteries: simple approaches for superior performance
journal, January 2012

  • Demir-Cakan, Rezan; Morcrette, Mathieu
  • Energy & Environmental Science, Vol. 6, Issue 1
  • DOI: 10.1039/c2ee23411d

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013

  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

An aprotic lithium/polyiodide semi-liquid battery with an ionic shield
journal, February 2017


Battery Technologies for Large-Scale Stationary Energy Storage
journal, July 2011


A new direction for the performance improvement of rechargeable lithium/sulfur batteries
journal, February 2012


A lithium/polysulfide semi-solid rechargeable flow battery with high output performance
journal, January 2014

  • Dong, Kang; Wang, Shengping; Yu, Jingxian
  • RSC Adv., Vol. 4, Issue 88
  • DOI: 10.1039/C4RA08413F

Fluorinated Reduced Graphene Oxide as an Interlayer in Li–S Batteries
journal, October 2015


New insights into the limiting parameters of the Li/S rechargeable cell
journal, February 2012


A Graphene-Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries
journal, November 2013


Highly Nitridated Graphene-Li 2 S Cathodes with Stable Modulated Cycles
journal, September 2015

  • Qiu, Yongcai; Rong, Genlan; Yang, Jie
  • Advanced Energy Materials, Vol. 5, Issue 23
  • DOI: 10.1002/aenm.201501369

Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Pie-like electrode design for high-energy density lithium–sulfur batteries
journal, November 2015

  • Li, Zhen; Zhang, Jin Tao; Chen, Yu Ming
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9850

High-Performance Lithium–Sulfur Batteries with a Cost-Effective Carbon Paper Electrode and High Sulfur-Loading
journal, September 2015


The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives
journal, May 2010


Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Stabilized Lithium–Metal Surface in a Polysulfide-Rich Environment of Lithium–Sulfur Batteries
journal, July 2014

  • Zu, Chenxi; Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 15
  • DOI: 10.1021/jz501352e

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

History, Evolution, and Future Status of Energy Storage
journal, May 2012


Slurryless Li 2 S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium Sulfur Battery
journal, February 2015


XPS Valence Characterization of Lithium Salts as a Tool to Study Electrode/Electrolyte Interfaces of Li-Ion Batteries
journal, July 2006

  • Dedryvère, R.; Leroy, S.; Martinez, H.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 26
  • DOI: 10.1021/jp061624f

In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells
journal, January 2013

  • Hagen, M.; Schiffels, P.; Hammer, M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.045308jes

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee00072a

Membrane Development for Vanadium Redox Flow Batteries
journal, October 2011


A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Flow Batteries
journal, January 2010

  • Nguyen, Trung; Savinell, Robert F.
  • The Electrochemical Society Interface, Vol. 19, Issue 3
  • DOI: 10.1149/2.F06103if

A Graphene-Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries
journal, November 2013


A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

Highly Nitridated Graphene-Li 2 S Cathodes with Stable Modulated Cycles
journal, September 2015

  • Qiu, Yongcai; Rong, Genlan; Yang, Jie
  • Advanced Energy Materials, Vol. 5, Issue 23
  • DOI: 10.1002/aenm.201501369

Membrane Development for Vanadium Redox Flow Batteries
journal, October 2011


Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives
journal, May 2010


New insights into the limiting parameters of the Li/S rechargeable cell
journal, February 2012


Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification
journal, April 2012

  • Barchasz, Céline; Molton, Florian; Duboc, Carole
  • Analytical Chemistry, Vol. 84, Issue 9
  • DOI: 10.1021/ac2032244

High-Performance Lithium–Sulfur Batteries with a Cost-Effective Carbon Paper Electrode and High Sulfur-Loading
journal, September 2015


Fluorinated Reduced Graphene Oxide as an Interlayer in Li–S Batteries
journal, October 2015


Slurryless Li 2 S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium Sulfur Battery
journal, February 2015


Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

XPS Valence Characterization of Lithium Salts as a Tool to Study Electrode/Electrolyte Interfaces of Li-Ion Batteries
journal, July 2006

  • Dedryvère, R.; Leroy, S.; Martinez, H.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 26
  • DOI: 10.1021/jp061624f

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Lithium–antimony–lead liquid metal battery for grid-level energy storage
journal, September 2014


Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013

  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Li–S batteries: simple approaches for superior performance
journal, January 2012

  • Demir-Cakan, Rezan; Morcrette, Mathieu
  • Energy & Environmental Science, Vol. 6, Issue 1
  • DOI: 10.1039/c2ee23411d

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee00072a

Battery Technologies for Large-Scale Stationary Energy Storage
journal, July 2011


In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells
journal, January 2013

  • Hagen, M.; Schiffels, P.; Hammer, M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.045308jes

Works referencing / citing this record:

Improving a Mg/S Battery with YCl 3 Additive and Magnesium Polysulfide
journal, December 2018


In Operando Visualization of the Electrochemical Formation of Liquid Polybromide Microdroplets
journal, September 2019

  • Wu, Yutong; Huang, Po‐Wei; Howe, Joshua D.
  • Angewandte Chemie, Vol. 131, Issue 43
  • DOI: 10.1002/ange.201906980

A Sodium Polysulfide Battery with Liquid/Solid Electrolyte: Improving Sulfur Utilization Using P 2 S 5 as Additive and Tetramethylurea as Catholyte Solvent
journal, December 2019

  • Medenbach, Lukas; Hartmann, Pascal; Janek, Juergen
  • Energy Technology, Vol. 8, Issue 3
  • DOI: 10.1002/ente.201901200

Electrotunable liquid sulfur microdroplets
journal, January 2020


General Growth of Carbon Nanotubes for Cerium Redox Reactions in High-Efficiency Redox Flow Batteries
journal, November 2019


In Operando Visualization of the Electrochemical Formation of Liquid Polybromide Microdroplets
journal, September 2019

  • Wu, Yutong; Huang, Po‐Wei; Howe, Joshua D.
  • Angewandte Chemie International Edition, Vol. 58, Issue 43
  • DOI: 10.1002/anie.201906980

An Aqueous Inorganic Polymer Binder for High Performance Lithium–Sulfur Batteries with Flame-Retardant Properties
journal, February 2018


Electrotunable liquid sulfur microdroplets
journal, January 2020


General Growth of Carbon Nanotubes for Cerium Redox Reactions in High-Efficiency Redox Flow Batteries
journal, November 2019