skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing

Abstract

Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. In this paper, we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or “plumose” spherulites. Furthermore, we find that in both synthetic and coral aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry,more » and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton’s supporting function and therefore to its evolutionary success. Finally, in this sense, spherulitic growth is Nature’s 3D printing.« less

Authors:
 [1];  [2];  [1];  [1];  [3]; ORCiD logo [1]
  1. Univ. of Wisconsin, Madison, WI (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Univ. of Haifa (Israel)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); Israel Science Foundation; United States–Israel Binational Science Foundation (BSF)
OSTI Identifier:
1379910
Grant/Contract Number:  
AC02-05CH11231; FG02-07ER15899; DMR-1603192; 312/15; BSF-2010065; BSF-2014035
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 11; Journal Issue: 7; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; biomineralization; CPA; crystallization by particle attachment; ion attachment; mesocrystal; PEEM; PIC-mapping

Citation Formats

Sun, Chang-Yu, Marcus, Matthew A., Frazier, Matthew J., Giuffre, Anthony J., Mass, Tali, and Gilbert, Pupa U. P. A. Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing. United States: N. p., 2017. Web. https://doi.org/10.1021/acsnano.7b00127.
Sun, Chang-Yu, Marcus, Matthew A., Frazier, Matthew J., Giuffre, Anthony J., Mass, Tali, & Gilbert, Pupa U. P. A. Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing. United States. https://doi.org/10.1021/acsnano.7b00127
Sun, Chang-Yu, Marcus, Matthew A., Frazier, Matthew J., Giuffre, Anthony J., Mass, Tali, and Gilbert, Pupa U. P. A. Wed . "Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing". United States. https://doi.org/10.1021/acsnano.7b00127. https://www.osti.gov/servlets/purl/1379910.
@article{osti_1379910,
title = {Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature’s Three-Dimensional Printing},
author = {Sun, Chang-Yu and Marcus, Matthew A. and Frazier, Matthew J. and Giuffre, Anthony J. and Mass, Tali and Gilbert, Pupa U. P. A.},
abstractNote = {Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. In this paper, we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or “plumose” spherulites. Furthermore, we find that in both synthetic and coral aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton’s supporting function and therefore to its evolutionary success. Finally, in this sense, spherulitic growth is Nature’s 3D printing.},
doi = {10.1021/acsnano.7b00127},
journal = {ACS Nano},
number = 7,
volume = 11,
place = {United States},
year = {2017},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Phenomenological Theory of Spherulitic Crystallization
journal, August 1963

  • Keith, H. D.; Padden, F. J.
  • Journal of Applied Physics, Vol. 34, Issue 8
  • DOI: 10.1063/1.1702757

Spherulitic Crystallization from the Melt. I. Fractionation and Impurity Segregation and Their Influence on Crystalline Morphology
journal, April 1964

  • Keith, H. D.; Padden, F. J.
  • Journal of Applied Physics, Vol. 35, Issue 4
  • DOI: 10.1063/1.1713606

Spherulitic crystallization in biopolymers
journal, December 1974


Spherulitic branching in the crystallization of liquid selenium
journal, April 1991


Growth and form of spherulites
journal, July 2005


Spherulites
journal, November 2011

  • Shtukenberg, Alexander G.; Punin, Yuri O.; Gunn, Erica
  • Chemical Reviews, Vol. 112, Issue 3
  • DOI: 10.1021/cr200297f

Crystallization of CaCO 3 in Water–Alcohol Mixtures: Spherulitic Growth, Polymorph Stabilization, and Morphology Change
journal, December 2011

  • Sand, K. K.; Rodriguez-Blanco, J. D.; Makovicky, E.
  • Crystal Growth & Design, Vol. 12, Issue 2
  • DOI: 10.1021/cg2012342

Growth and structure in abalone shell
journal, January 2005


Geochemical Perspectives on Coral Mineralization
journal, January 2003

  • Cohen, A. L.
  • Reviews in Mineralogy and Geochemistry, Vol. 54, Issue 1
  • DOI: 10.2113/0540151

Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals
journal, July 2009

  • Holcomb, Michael; Cohen, Anne L.; Gabitov, Rinat I.
  • Geochimica et Cosmochimica Acta, Vol. 73, Issue 14
  • DOI: 10.1016/j.gca.2009.04.015

Control and Design Principles in Biological Mineralization
journal, February 1992

  • Addadi, Lia; Weiner, Stephen
  • Angewandte Chemie International Edition in English, Vol. 31, Issue 2
  • DOI: 10.1002/anie.199201531

Glass-Crystal Growth Mode for Testosterone Propionate
journal, October 2011

  • Shtukenberg, Alexander; Freundenthal, John; Gunn, Erica
  • Crystal Growth & Design, Vol. 11, Issue 10
  • DOI: 10.1021/cg200640g

Biomineral nanoparticles are space-filling
journal, January 2011

  • Yang, Li; Killian, Christopher E.; Kunz, Martin
  • Nanoscale, Vol. 3, Issue 2
  • DOI: 10.1039/C0NR00697A

Coral Skeletons: An Explanation of Their Growth and Structure
journal, December 1970


Crystallization by particle attachment in synthetic, biogenic, and geologic environments
journal, July 2015

  • De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.
  • Science, Vol. 349, Issue 6247
  • DOI: 10.1126/science.aaa6760

Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase
journal, July 2014

  • Gal, Assaf; Kahil, Keren; Vidavsky, Netta
  • Advanced Functional Materials, Vol. 24, Issue 34
  • DOI: 10.1002/adfm.201400676

Direct Nanoscale Imaging Reveals the Growth of Calcite Crystals via Amorphous Nanoparticles
journal, March 2016

  • Rodriguez-Navarro, Carlos; Burgos Cara, Alejandro; Elert, Kerstin
  • Crystal Growth & Design, Vol. 16, Issue 4
  • DOI: 10.1021/acs.cgd.5b01180

Solidification of eutectic Ni-Ni3Ti alloys
journal, September 1976

  • Geveling, N. N.; Maslenkov, S. B.
  • Metal Science and Heat Treatment, Vol. 18, Issue 9
  • DOI: 10.1007/BF00704110

Structure and growth of platelets in graphite spherulites in cast iron
journal, January 1994

  • Miao, Baihe; North Wood, D. O.; Bian, Weimin
  • Journal of Materials Science, Vol. 29, Issue 1
  • DOI: 10.1007/BF00356601

Formation and ageing of L-glutamic acid spherulites
journal, April 2010

  • Beck, R.; Malthe-Sørenssen, D.; Andreassen, J. -P.
  • Crystal Research and Technology, Vol. 45, Issue 7
  • DOI: 10.1002/crat.201000125

Protein Spherulites
journal, February 1960


Some studies of deformation processes in fully-spherulitic polypropylene
journal, February 1971

  • Way, J. L.; Atkinson, J. R.
  • Journal of Materials Science, Vol. 6, Issue 2
  • DOI: 10.1007/BF00550338

Quantifying Crystalline Fraction within Polymer Spherulites
journal, February 2007

  • Gatos, Konstantinos G.; Minogianni, Chrysa; Galiotis, Costas
  • Macromolecules, Vol. 40, Issue 4
  • DOI: 10.1021/ma0623284

Biomineralization in newly settled recruits of the scleractinian coral Pocillopora damicornis : Biomineralization in
journal, June 2014

  • Gilis, Melany; Meibom, Anders; Domart-Coulon, Isabelle
  • Journal of Morphology, Vol. 275, Issue 12
  • DOI: 10.1002/jmor.20307

Avian eggshell mineralization: biochemical and functional characterization of matrix proteins
journal, October 2004


Late Cretaceous Peruvian eggshells and their relationships with laurasian and eastern Gondwanian material
journal, January 1997


Polymorphic crystalline structure of fish otoliths
journal, October 1993


Influence on the Formation of Aragonite or Vaterite by Otolith Macromolecules
journal, January 2005

  • Falini, Giuseppe; Fermani, Simona; Vanzo, Silvia
  • European Journal of Inorganic Chemistry, Vol. 2005, Issue 1
  • DOI: 10.1002/ejic.200400419

Structure of recent and fossil mysid statoliths (Crustacea, Mysidacea)
journal, January 1993

  • Wittmann, K. J.; Schlacher, T. A.; Ariani, A. P.
  • Journal of Morphology, Vol. 215, Issue 1
  • DOI: 10.1002/jmor.1052150103

An evolutionary fast-track to biocalcification: Fast-tracking biocalcification
journal, March 2010


Mechanism of Calcium Oxalate Monohydrate Kidney Stones Formation: Layered Spherulitic Growth
journal, February 2010

  • Al-Atar, Usama; Bokov, Alexei A.; Marshall, Dan
  • Chemistry of Materials, Vol. 22, Issue 4
  • DOI: 10.1021/cm901751g

Narrowly Distributed Crystal Orientation in Biomineral Vaterite
journal, September 2015


Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals
journal, December 2012

  • Venn, A. A.; Tambutte, E.; Holcomb, M.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 5
  • DOI: 10.1073/pnas.1216153110

Coral calcifying fluid pH dictates response to ocean acidification
journal, June 2014

  • Holcomb, M.; Venn, A. A.; Tambutté, E.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05207

Analogous biomineralization processes between the fossil coral Calceola sandalina (Rugosa, Devonian) and other Recent and fossil cnidarians
journal, November 2016

  • Coronado, Ismael; Pérez-Huerta, Alberto; Rodríguez, Sergio
  • Journal of Structural Biology, Vol. 196, Issue 2
  • DOI: 10.1016/j.jsb.2016.06.013

Primary biogenic skeletal structures in Multithecopora (Tabulata, Pennsylvanian)
journal, September 2013

  • Coronado, Ismael; Pérez-Huerta, Alberto; Rodríguez, Sergio
  • Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 386
  • DOI: 10.1016/j.palaeo.2013.05.030

Aragonite Precipitation by “Proto-Polyps” in Coral Cell Cultures
journal, April 2012


Stable isotopes in deep-sea corals and a new mechanism for “vital effects”
journal, March 2003


Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation
journal, September 2007

  • Gagnon, Alexander C.; Adkins, Jess F.; Fernandez, Diego P.
  • Earth and Planetary Science Letters, Vol. 261, Issue 1-2
  • DOI: 10.1016/j.epsl.2007.07.013

Microstructural and physico-chemical characterization of ‘centers of calcification’ in septa of some Recent scleractinian corals
journal, November 1998

  • Cuif, Jean-Pierre; Dauphin, Yannicke
  • Paläontologische Zeitschrift, Vol. 72, Issue 3-4
  • DOI: 10.1007/BF02988357

Coral Skeleton Construction: A Physiochemically Dominated Process
journal, April 1986


Distribution of magnesium in coral skeleton: MG MICRODISTRIBUTION IN CORAL
journal, December 2004

  • Meibom, Anders; Cuif, Jean-Pierre; Hillion, François
  • Geophysical Research Letters, Vol. 31, Issue 23
  • DOI: 10.1029/2004GL021313

The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale
journal, June 2005


XANES mapping of organic sulfate in three scleractinian coral skeletons
journal, January 2003


Immunolocalization of skeletal matrix proteins in tissue and mineral of the coral Stylophora pistillata
journal, August 2014

  • Mass, T.; Drake, J. L.; Peters, E. C.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 35
  • DOI: 10.1073/pnas.1408621111

Nano to macroscale biomineral architecture of red coral (Corallium rubrum)
journal, November 2008

  • Vielzeuf, D.; Garrabou, J.; Baronnet, A.
  • American Mineralogist, Vol. 93, Issue 11-12
  • DOI: 10.2138/am.2008.2923

Microstructural evolution and nanoscale crystallography in scleractinian coral spherulites
journal, July 2013

  • van de Locht, Renée; Verch, Andreas; Saunders, Martin
  • Journal of Structural Biology, Vol. 183, Issue 1
  • DOI: 10.1016/j.jsb.2013.05.005

Phase transitions in biogenic amorphous calcium carbonate
journal, April 2012

  • Gong, Y. U. T.; Killian, C. E.; Olson, I. C.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 16
  • DOI: 10.1073/pnas.1118085109

The Hierarchical Architecture of Nacre and Its Mimetic Material
journal, October 2005

  • Oaki, Yuya; Imai, Hiroaki
  • Angewandte Chemie International Edition, Vol. 44, Issue 40
  • DOI: 10.1002/anie.200500338

Nanoscale Transforming Mineral Phases in Fresh Nacre
journal, October 2015

  • DeVol, Ross T.; Sun, Chang-Yu; Marcus, Matthew A.
  • Journal of the American Chemical Society, Vol. 137, Issue 41
  • DOI: 10.1021/jacs.5b07931

Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays
journal, March 2010

  • Mahamid, J.; Aichmayer, B.; Shimoni, E.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 14
  • DOI: 10.1073/pnas.0914218107

In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata
journal, March 2006

  • Raz-Bahat, Michal; Erez, Jonathan; Rinkevich, Baruch
  • Cell and Tissue Research, Vol. 325, Issue 2
  • DOI: 10.1007/s00441-006-0182-8

Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata
journal, June 2007


Architecture of Columnar Nacre, and Implications for Its Formation Mechanism
journal, June 2007


Polarization-dependent imaging contrast in abalone shells
journal, February 2008


Polarization-dependent Imaging Contrast (PIC) mapping reveals nanocrystal orientation patterns in carbonate biominerals
journal, October 2012


Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using X-ray absorption spectroscopy
journal, June 2011

  • Gilbert, P. U. P. A.; Young, A.; Coppersmith, S. N.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 28
  • DOI: 10.1073/pnas.1107917108

Oxygen Spectroscopy and Polarization-Dependent Imaging Contrast (PIC)-Mapping of Calcium Carbonate Minerals and Biominerals
journal, May 2014

  • DeVol, Ross T.; Metzler, Rebecca A.; Kabalah-Amitai, Lee
  • The Journal of Physical Chemistry B, Vol. 118, Issue 28
  • DOI: 10.1021/jp503700g

Nacre tablet thickness records formation temperature in modern and fossil shells
journal, February 2017

  • Gilbert, Pupa U. P. A.; Bergmann, Kristin D.; Myers, Corinne E.
  • Earth and Planetary Science Letters, Vol. 460
  • DOI: 10.1016/j.epsl.2016.11.012

Mollusk Shell Nacre Ultrastructure Correlates with Environmental Temperature and Pressure
journal, March 2012

  • Olson, Ian C.; Kozdon, Reinhard; Valley, John W.
  • Journal of the American Chemical Society, Vol. 134, Issue 17
  • DOI: 10.1021/ja210808s

Asprich Peptides Are Occluded in Calcite and Permanently Disorder Biomineral Crystals
journal, August 2010

  • Metzler, Rebecca A.; Tribello, Gareth A.; Parrinello, Michele
  • Journal of the American Chemical Society, Vol. 132, Issue 33
  • DOI: 10.1021/ja103089r

Self-Sharpening Mechanism of the Sea Urchin Tooth
journal, December 2010

  • Killian, Christopher E.; Metzler, Rebecca A.; Gong, Yutao
  • Advanced Functional Materials, Vol. 21, Issue 4
  • DOI: 10.1002/adfm.201001546

Mechanism of Calcite Co-Orientation in the Sea Urchin Tooth
journal, December 2009

  • Killian, Christopher E.; Metzler, Rebecca A.; Gong, Y. U. T.
  • Journal of the American Chemical Society, Vol. 131, Issue 51
  • DOI: 10.1021/ja907063z

Skeletal development inAcropora cervicornis: II. Diel patterns of calcium carbonate accretion
journal, November 1983


Biomimetic type morphologies of calcium carbonate grown in absence of additives
journal, January 2012

  • Andreassen, Jens-Petter; Beck, Ralf; Nergaard, Margrethe
  • Faraday Discussions, Vol. 159
  • DOI: 10.1039/c2fd20056b

Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca)
journal, March 2005


Spherulitic Growth of Calcium Carbonate
journal, May 2010

  • Beck, Ralf; Andreassen, Jens-Petter
  • Crystal Growth & Design, Vol. 10, Issue 7
  • DOI: 10.1021/cg901460g

Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase
journal, November 2004


Structure-property relationships of a biological mesocrystal in the adult sea urchin spine
journal, February 2012

  • Seto, J.; Ma, Y.; Davis, S. A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 10
  • DOI: 10.1073/pnas.1109243109

Isotropic microscale mechanical properties of coral skeletons
journal, May 2015

  • Pasquini, Luca; Molinari, Alan; Fantazzini, Paola
  • Journal of The Royal Society Interface, Vol. 12, Issue 106
  • DOI: 10.1098/rsif.2015.0168

Materials become insensitive to flaws at nanoscale: Lessons from nature
journal, May 2003

  • Gao, H.; Ji, B.; Jager, I. L.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 10
  • DOI: 10.1073/pnas.0631609100

Nonclassical crystallization in vivo et in vitro (I): Process-structure-property relationships of nanogranular biominerals
journal, November 2016

  • Wolf, Stephan E.; Böhm, Corinna F.; Harris, Joe
  • Journal of Structural Biology, Vol. 196, Issue 2
  • DOI: 10.1016/j.jsb.2016.07.016

Aragonite Crystal Growth and Solid-State Aragonite–Calcite Transformation: A Physico–Geometrical Relationship via Thermal Dehydration of Included Water
journal, April 2013

  • Koga, Nobuyoshi; Kasahara, Daisuke; Kimura, Tomoyasu
  • Crystal Growth & Design, Vol. 13, Issue 5
  • DOI: 10.1021/cg400350w

Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules
journal, January 1996


Compensation of charging in X-PEEM: a successful test on mineral inclusions in 4.4Ga old zircon
journal, December 2003


    Works referencing / citing this record:

    Protein disorder–order interplay to guide the growth of hierarchical mineralized structures
    journal, June 2018


    Precipitation of silver particles with controlled morphologies from aqueous solutions
    journal, January 2020

    • Wang, Lijuan; Andreassen, Jens-Petter; Ucar, Seniz
    • CrystEngComm, Vol. 22, Issue 3
    • DOI: 10.1039/c9ce01601e

    Amorphous calcium carbonate particles form coral skeletons
    journal, August 2017

    • Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu
    • Proceedings of the National Academy of Sciences, Vol. 114, Issue 37
    • DOI: 10.1073/pnas.1707890114

    The first tunicate with a calcareous exoskeleton (Upper Triassic, northern Italy)
    journal, March 2018