DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transfer RNAs with novel cloverleaf structures

Abstract

We report the identification of novel tRNA species with 12-base pair amino-acid acceptor branches composed of longer acceptor stem and shorter Tstem. While canonical tRNAs have a 7/5 configuration of the branch, the novel tRNAs have either 8/4 or 9/3 structure. They were found during the search for selenocysteine tRNAs in terabytes of genome, metagenome and metatranscriptome sequences. Certain bacteria and their phages employ the 8/4 structure for serine and histidine tRNAs, while minor cysteine and selenocysteine tRNA species may have a modified 8/4 structure with one bulge nucleotide. In Acidobacteria, tRNAs with 8/4 and 9/3 structures may function as missense and nonsense suppressor tRNAs and/or regulatory noncod ing RNAs. In δ-proteobacteria, an additional cysteine tRNA with an 8/4 structure mimics selenocysteine tRNA and may function as opal suppressor. We examined the potential translation function of suppressor tRNA species inEscherichia coli; tRNAs with 8/4 or 9/3 structures efficiently inserted serine, alanine and cysteine in response to stop and sense codons, depending on the identity element and anticodon sequence of the tRNA. These findings expand our view of how tRNA, and possibly the genetic code, is diversified in nature.

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [2];  [3]
  1. Yale Univ., New Haven, CT (United States). Dept. of Molecular Biophysics and Biochemistry
  2. USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)
  3. Yale Univ., New Haven, CT (United States). Dept. of Molecular Biophysics and Biochemistry, Dept. of Chemistry
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1379781
Grant/Contract Number:  
AC02-05CH11231; FG02-98ER20311
Resource Type:
Accepted Manuscript
Journal Name:
Nucleic Acids Research
Additional Journal Information:
Journal Volume: 45; Journal Issue: 5; Journal ID: ISSN 0305-1048
Publisher:
Oxford University Press
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; amino acids; allopurinol; anticodon; codon nucleotides; cysteine; genome; proteobacteria; transfer ma; selenocysteine; serine; bacteria; transfer technique

Citation Formats

Mukai, Takahito, Vargas-Rodriguez, Oscar, Englert, Markus, Tripp, H. James, Ivanova, Natalia N., Rubin, Edward M., Kyrpides, Nikos C., and Söll, Dieter. Transfer RNAs with novel cloverleaf structures. United States: N. p., 2016. Web. doi:10.1093/nar/gkw898.
Mukai, Takahito, Vargas-Rodriguez, Oscar, Englert, Markus, Tripp, H. James, Ivanova, Natalia N., Rubin, Edward M., Kyrpides, Nikos C., & Söll, Dieter. Transfer RNAs with novel cloverleaf structures. United States. https://doi.org/10.1093/nar/gkw898
Mukai, Takahito, Vargas-Rodriguez, Oscar, Englert, Markus, Tripp, H. James, Ivanova, Natalia N., Rubin, Edward M., Kyrpides, Nikos C., and Söll, Dieter. Wed . "Transfer RNAs with novel cloverleaf structures". United States. https://doi.org/10.1093/nar/gkw898. https://www.osti.gov/servlets/purl/1379781.
@article{osti_1379781,
title = {Transfer RNAs with novel cloverleaf structures},
author = {Mukai, Takahito and Vargas-Rodriguez, Oscar and Englert, Markus and Tripp, H. James and Ivanova, Natalia N. and Rubin, Edward M. and Kyrpides, Nikos C. and Söll, Dieter},
abstractNote = {We report the identification of novel tRNA species with 12-base pair amino-acid acceptor branches composed of longer acceptor stem and shorter Tstem. While canonical tRNAs have a 7/5 configuration of the branch, the novel tRNAs have either 8/4 or 9/3 structure. They were found during the search for selenocysteine tRNAs in terabytes of genome, metagenome and metatranscriptome sequences. Certain bacteria and their phages employ the 8/4 structure for serine and histidine tRNAs, while minor cysteine and selenocysteine tRNA species may have a modified 8/4 structure with one bulge nucleotide. In Acidobacteria, tRNAs with 8/4 and 9/3 structures may function as missense and nonsense suppressor tRNAs and/or regulatory noncod ing RNAs. In δ-proteobacteria, an additional cysteine tRNA with an 8/4 structure mimics selenocysteine tRNA and may function as opal suppressor. We examined the potential translation function of suppressor tRNA species inEscherichia coli; tRNAs with 8/4 or 9/3 structures efficiently inserted serine, alanine and cysteine in response to stop and sense codons, depending on the identity element and anticodon sequence of the tRNA. These findings expand our view of how tRNA, and possibly the genetic code, is diversified in nature.},
doi = {10.1093/nar/gkw898},
journal = {Nucleic Acids Research},
number = 5,
volume = 45,
place = {United States},
year = {Wed Oct 05 00:00:00 EDT 2016},
month = {Wed Oct 05 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

IMG/M 4 version of the integrated metagenome comparative analysis system
journal, October 2013

  • Markowitz, Victor M.; Chen, I-Min A.; Chu, Ken
  • Nucleic Acids Research, Vol. 42, Issue D1, p. D568-D573
  • DOI: 10.1093/nar/gkt919

tRNA-Derived Fragments (tRFs): Emerging New Roles for an Ancient RNA in the Regulation of Gene Expression
journal, November 2015


A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes
journal, May 2016

  • Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe
  • Genome Research, Vol. 26, Issue 7, p. 945-955
  • DOI: 10.1101/gr.200931.115

Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology
journal, September 2015

  • Ling, Jiqiang; O'Donoghue, Patrick; Söll, Dieter
  • Nature Reviews Microbiology, Vol. 13, Issue 11
  • DOI: 10.1038/nrmicro3568

Evolution of the selenoproteome in Helicobacter pylori and Epsilonproteobacteria
journal, September 2015


ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences
journal, January 2004

  • Laslett, Dean; Canback, Bjorn
  • Nucleic Acids Research, Vol. 32, Issue 1, p. 11-16
  • DOI: 10.1093/nar/gkh152

The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification
journal, January 1989

  • Schön, Astrid; Böck, August; Ott, Günther
  • Nucleic Acids Research, Vol. 17, Issue 18, p. 7159-7165
  • DOI: 10.1093/nar/17.18.7159

Engineering the elongation factor Tu for efficient selenoprotein synthesis
journal, July 2014

  • Haruna, Ken-ichi; Alkazemi, Muhammad H.; Liu, Yuchen
  • Nucleic Acids Research, Vol. 42, Issue 15, p. 9976-9983
  • DOI: 10.1093/nar/gku691

Clustal W and Clustal X version 2.0
journal, September 2007


Evolution of the selenoproteome in Helicobacter pylori and Epsilonproteobacteria
journal, September 2015


ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences
journal, January 2004

  • Laslett, Dean; Canback, Bjorn
  • Nucleic Acids Research, Vol. 32, Issue 1, p. 11-16
  • DOI: 10.1093/nar/gkh152

Engineering the elongation factor Tu for efficient selenoprotein synthesis
journal, July 2014

  • Haruna, Ken-ichi; Alkazemi, Muhammad H.; Liu, Yuchen
  • Nucleic Acids Research, Vol. 42, Issue 15, p. 9976-9983
  • DOI: 10.1093/nar/gku691

Alternative genetic code for amino acids and transfer RNA revisited
journal, January 2013

  • Hamashima, Kiyofumi; Kanai, Akio
  • BioMolecular Concepts, Vol. 4, Issue 3, p. 309-318
  • DOI: 10.1515/bmc-2013-0002

Facile Recoding of Selenocysteine in Nature
journal, March 2016

  • Mukai, Takahito; Englert, Markus; Tripp, H. James
  • Angewandte Chemie International Edition, Vol. 55, Issue 17, p. 5337-5341
  • DOI: 10.1002/anie.201511657

Stop codon reassignments in the wild
journal, May 2014

  • Ivanova, N. N.; Schwientek, P.; Tripp, H. J.
  • Science, Vol. 344, Issue 6186, p. 909-913
  • DOI: 10.1126/science.1250691

Stop codon reassignments in the wild
journal, May 2014

  • Ivanova, N. N.; Schwientek, P.; Tripp, H. J.
  • Science, Vol. 344, Issue 6186, p. 909-913
  • DOI: 10.1126/science.1250691

Eukaryotic selenocysteine tRNA has the 9/4 secondary structure
journal, January 2000


A simple structural feature is a major determinant of the identity of a transfer RNA
journal, May 1988

  • Hou, Ya-Ming; Schimmel, Paul
  • Nature, Vol. 333, Issue 6169, p. 140-145
  • DOI: 10.1038/333140a0

The dual identities of mammalian tRNASec for SerRS and selenocysteine synthase
journal, January 1998

  • Mizutani, Takaharu; Kanaya, Kazuo; Ikeda, Seiei
  • Molecular Biology Reports, Vol. 25, Issue 4, p. 211-216
  • DOI: 10.1023/A:1006879820805

IMG/M 4 version of the integrated metagenome comparative analysis system
journal, October 2013

  • Markowitz, Victor M.; Chen, I-Min A.; Chu, Ken
  • Nucleic Acids Research, Vol. 42, Issue D1, p. D568-D573
  • DOI: 10.1093/nar/gkt919

tRNA-Derived Fragments (tRFs): Emerging New Roles for an Ancient RNA in the Regulation of Gene Expression
journal, November 2015


Conversion of aminoacylation specificity from tRNATyr to tRNASer in vitro
journal, January 1990

  • Himeno, Hyouta; Hasegawa, Tsunemi; Ueda, Takuya
  • Nucleic Acids Research, Vol. 18, Issue 23, p. 6815-6819
  • DOI: 10.1093/nar/18.23.6815

Construction of two Escherichia coli amber suppressor genes: tRNAPheCUA and tRNACysCUA.
journal, September 1986

  • Normanly, J.; Masson, J. M.; Kleina, L. G.
  • Proceedings of the National Academy of Sciences, Vol. 83, Issue 17
  • DOI: 10.1073/pnas.83.17.6548

Post-transcriptional nucleotide addition is responsible for the formation of the 5' terminus of histidine tRNA
journal, November 1982

  • Cooley, L.; Appel, B.; Soll, D.
  • Proceedings of the National Academy of Sciences, Vol. 79, Issue 21, p. 6475-6479
  • DOI: 10.1073/pnas.79.21.6475

The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser)
journal, March 1994


Stationary-phase expression and aminoacylation of a transfer-RNA-like small RNA
journal, August 2005

  • Ataide, Sandro F.; Jester, Brian C.; Devine, Kevin M.
  • EMBO reports, Vol. 6, Issue 8, p. 742-747
  • DOI: 10.1038/sj.embor.7400474

Direct detection of potential selenium delivery proteins by using an Escherichia coli strain unable to incorporate selenium from selenite into proteins
journal, June 2002

  • Lacourciere, G. M.; Levine, R. L.; Stadtman, T. C.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 14, p. 9150-9153
  • DOI: 10.1073/pnas.142291199

Non-canonical roles of tRNAs and tRNA mimics in bacterial cell biology
journal, June 2016

  • Katz, Assaf; Elgamal, Sara; Rajkovic, Andrei
  • Molecular Microbiology, Vol. 101, Issue 4, p. 545-558
  • DOI: 10.1111/mmi.13419

Expansion of Noncanonical V-Arm-Containing tRNAs in Eukaryotes
journal, November 2015

  • Hamashima, Kiyofumi; Tomita, Masaru; Kanai, Akio
  • Molecular Biology and Evolution, Vol. 33, Issue 2, p. 530-540
  • DOI: 10.1093/molbev/msv253

Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases
journal, July 2013

  • Tukalo, M. A.; Yaremchuk, G. D.; Kovalenko, O. P.
  • Biopolymers and Cell, Vol. 29, Issue 4
  • DOI: 10.7124/bc.000825

In vitro synthesis of selenocysteinyl-tRNA(UCA) from seryl-tRNA(UCA): involvement and characterization of the selD gene product.
journal, January 1990

  • Leinfelder, W.; Forchhammer, K.; Veprek, B.
  • Proceedings of the National Academy of Sciences, Vol. 87, Issue 2
  • DOI: 10.1073/pnas.87.2.543

Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils
journal, May 2008

  • Koch, I. H.; Gich, F.; Dunfield, P. F.
  • INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, Vol. 58, Issue 5
  • DOI: 10.1099/ijs.0.65303-0

[3′-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation
journal, February 2008


Rationally evolving tRNA Pyl for efficient incorporation of noncanonical amino acids
journal, August 2015

  • Fan, Chenguang; Xiong, Hai; Reynolds, Noah M.
  • Nucleic Acids Research, Vol. 43, Issue 22
  • DOI: 10.1093/nar/gkv800

Facile Recoding of Selenocysteine in Nature
journal, March 2016

  • Mukai, Takahito; Englert, Markus; Tripp, H. James
  • Angewandte Chemie International Edition, Vol. 55, Issue 17, p. 5337-5341
  • DOI: 10.1002/anie.201511657

Evidence for transition-state stabilization by serine-148 in the catalytic mechanism of chloramphenicol acetyltransferase
journal, February 1990

  • Lewendon, Ann; Murray, Iain A.; Shaw, William V.
  • Biochemistry, Vol. 29, Issue 8
  • DOI: 10.1021/bi00460a016

Clustal W and Clustal X version 2.0
journal, September 2007


The 9/4 secondary structure of eukaryotic selenocysteine tRNA: More pieces of evidence
journal, September 1998


Post-transcriptional nucleotide addition is responsible for the formation of the 5' terminus of histidine tRNA
journal, November 1982

  • Cooley, L.; Appel, B.; Soll, D.
  • Proceedings of the National Academy of Sciences, Vol. 79, Issue 21, p. 6475-6479
  • DOI: 10.1073/pnas.79.21.6475

Construction of two Escherichia coli amber suppressor genes: tRNAPheCUA and tRNACysCUA.
journal, September 1986

  • Normanly, J.; Masson, J. M.; Kleina, L. G.
  • Proceedings of the National Academy of Sciences, Vol. 83, Issue 17
  • DOI: 10.1073/pnas.83.17.6548

UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota
journal, March 2013

  • Campbell, J. H.; O'Donoghue, P.; Campbell, A. G.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 14, p. 5540-5545
  • DOI: 10.1073/pnas.1303090110

The additional guanylate at the 5' terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P.
journal, February 1986

  • Orellana, O.; Cooley, L.; Söll, D.
  • Molecular and Cellular Biology, Vol. 6, Issue 2, p. 525-529
  • DOI: 10.1128/MCB.6.2.525

Author Correction: The selective tRNA aminoacylation mechanism based on a single G•U pair
journal, November 2018


Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity
journal, February 2014


Recognition of tRNACys by Escherichia coli cysteinyl-tRNA synthetase
journal, July 1993

  • Komatsoulis, George A.; Abelson, John
  • Biochemistry, Vol. 32, Issue 29, p. 7435-7444
  • DOI: 10.1021/bi00080a014

TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase
journal, February 2006


A simple structural feature is a major determinant of the identity of a transfer RNA
journal, May 1988

  • Hou, Ya-Ming; Schimmel, Paul
  • Nature, Vol. 333, Issue 6169, p. 140-145
  • DOI: 10.1038/333140a0

Genetic Codes with No Dedicated Stop Codon: Context-Dependent Translation Termination
journal, July 2016


The ‘polysemous’ codon—a codon with multiple amino acid assignment caused by dual specificity of tRNA identity
journal, March 1997

  • Suzuki, Tsutomu; Ueda, Takuya; Watanabe, Kimitsuna
  • The EMBO Journal, Vol. 16, Issue 5, p. 1122-1134
  • DOI: 10.1093/emboj/16.5.1122

Genetic Code Supports Targeted Insertion of Two Amino Acids by One Codon
journal, January 2009

  • Turanov, A. A.; Lobanov, A. V.; Fomenko, D. E.
  • Science, Vol. 323, Issue 5911, p. 259-261
  • DOI: 10.1126/science.1164748

tRNAs as regulators of biological processes
journal, June 2014


Genetic Code Supports Targeted Insertion of Two Amino Acids by One Codon
journal, January 2009

  • Turanov, A. A.; Lobanov, A. V.; Fomenko, D. E.
  • Science, Vol. 323, Issue 5911, p. 259-261
  • DOI: 10.1126/science.1164748

Evidence for transition-state stabilization by serine-148 in the catalytic mechanism of chloramphenicol acetyltransferase
journal, February 1990

  • Lewendon, Ann; Murray, Iain A.; Shaw, William V.
  • Biochemistry, Vol. 29, Issue 8
  • DOI: 10.1021/bi00460a016

Rationally evolving tRNA Pyl for efficient incorporation of noncanonical amino acids
journal, August 2015

  • Fan, Chenguang; Xiong, Hai; Reynolds, Noah M.
  • Nucleic Acids Research, Vol. 43, Issue 22
  • DOI: 10.1093/nar/gkv800

Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases
journal, December 2011


Recognition of tRNACys by Escherichia coli cysteinyl-tRNA synthetase
journal, July 1993

  • Komatsoulis, George A.; Abelson, John
  • Biochemistry, Vol. 32, Issue 29, p. 7435-7444
  • DOI: 10.1021/bi00080a014

Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end
journal, May 1988


The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser)
journal, March 1994


TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase
journal, February 2006


Silvibacterium bohemicum gen. nov. sp. nov., an acidobacterium isolated from coniferous soil in the Bohemian Forest National Park
journal, February 2016

  • Lladó, Salvador; Benada, Oldrich; Cajthaml, Tomáš
  • Systematic and Applied Microbiology, Vol. 39, Issue 1, p. 14-19
  • DOI: 10.1016/j.syapm.2015.12.005

Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils
journal, May 2008

  • Koch, I. H.; Gich, F.; Dunfield, P. F.
  • INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, Vol. 58, Issue 5
  • DOI: 10.1099/ijs.0.65303-0

Direct detection of potential selenium delivery proteins by using an Escherichia coli strain unable to incorporate selenium from selenite into proteins
journal, June 2002

  • Lacourciere, G. M.; Levine, R. L.; Stadtman, T. C.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 14, p. 9150-9153
  • DOI: 10.1073/pnas.142291199

Cysteine Activation Is an Inherent in Vitro Property of Prolyl-tRNA Synthetases
journal, July 2002

  • Ahel, Ivan; Stathopoulos, Constantinos; Ambrogelly, Alexandre
  • Journal of Biological Chemistry, Vol. 277, Issue 38
  • DOI: 10.1074/jbc.m206928200

The anticodon and discriminator base are major determinants of cysteine tRNA identity in vivo.
journal, April 1992


UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota
journal, March 2013

  • Campbell, J. H.; O'Donoghue, P.; Campbell, A. G.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 14, p. 5540-5545
  • DOI: 10.1073/pnas.1303090110

The selective tRNA aminoacylation mechanism based on a single G•U pair
journal, June 2014

  • Naganuma, Masahiro; Sekine, Shun-ichi; Chong, Yeeting Esther
  • Nature, Vol. 510, Issue 7506, p. 507-511
  • DOI: 10.1038/nature13440

Alternative genetic code for amino acids and transfer RNA revisited
journal, January 2013

  • Hamashima, Kiyofumi; Kanai, Akio
  • BioMolecular Concepts, Vol. 4, Issue 3, p. 309-318
  • DOI: 10.1515/bmc-2013-0002

Conversion of aminoacylation specificity from tRNATyr to tRNASer in vitro
journal, January 1990

  • Himeno, Hyouta; Hasegawa, Tsunemi; Ueda, Takuya
  • Nucleic Acids Research, Vol. 18, Issue 23, p. 6815-6819
  • DOI: 10.1093/nar/18.23.6815

[3′-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation
journal, February 2008


tRNAs as regulators of biological processes
journal, June 2014


In vitro synthesis of selenocysteinyl-tRNA(UCA) from seryl-tRNA(UCA): involvement and characterization of the selD gene product.
journal, January 1990

  • Leinfelder, W.; Forchhammer, K.; Veprek, B.
  • Proceedings of the National Academy of Sciences, Vol. 87, Issue 2
  • DOI: 10.1073/pnas.87.2.543

A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes
journal, May 2016

  • Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe
  • Genome Research, Vol. 26, Issue 7, p. 945-955
  • DOI: 10.1101/gr.200931.115

Expansion of Noncanonical V-Arm-Containing tRNAs in Eukaryotes
journal, November 2015

  • Hamashima, Kiyofumi; Tomita, Masaru; Kanai, Akio
  • Molecular Biology and Evolution, Vol. 33, Issue 2, p. 530-540
  • DOI: 10.1093/molbev/msv253

A Soluble Ribonucleic acid Intermediate in Protein Synthesis
journal, March 1958

  • Hoagland, Mahlon B.; Stephenson, Mary Louise; Scott, Jesse F.
  • Journal of Biological Chemistry, Vol. 231, Issue 1
  • DOI: 10.1016/S0021-9258(19)77302-5

Works referencing / citing this record:

From chemical metabolism to life: the origin of the genetic coding process
journal, January 2017


Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli
journal, November 2017


Synthetic Tyrosine tRNA Molecules with Noncanonical Secondary Structures
journal, December 2018

  • Sakamoto, Kensaku; Hayashi, Akiko
  • International Journal of Molecular Sciences, Vol. 20, Issue 1
  • DOI: 10.3390/ijms20010092

Versatility of Synthetic tRNAs in Genetic Code Expansion
journal, November 2018


Endogenous Stochastic Decoding of the CUG Codon by Competing Ser- and Leu-tRNAs in Ascoidea asiatica
journal, July 2018

  • Mühlhausen, Stefanie; Schmitt, Hans Dieter; Pan, Kuan-Ting
  • Current Biology, Vol. 28, Issue 13
  • DOI: 10.1016/j.cub.2018.04.085

Computational identification of the selenocysteine tRNA (tRNASec) in genomes
journal, February 2017

  • Santesmasses, Didac; Mariotti, Marco; Guigó, Roderic
  • PLOS Computational Biology, Vol. 13, Issue 2, Article No. e1005383
  • DOI: 10.1371/journal.pcbi.1005383

Synthetic Tyrosine tRNA Molecules with Noncanonical Secondary Structures
journal, December 2018

  • Sakamoto, Kensaku; Hayashi, Akiko
  • International Journal of Molecular Sciences, Vol. 20, Issue 1
  • DOI: 10.3390/ijms20010092

Aminoacyl-tRNA Synthetases and tRNAs for an Expanded Genetic Code: What Makes them Orthogonal?
journal, April 2019

  • Melnikov, Sergey V.; Söll, Dieter
  • International Journal of Molecular Sciences, Vol. 20, Issue 8
  • DOI: 10.3390/ijms20081929

Aminoacyl-tRNA Synthetases and tRNAs for an Expanded Genetic Code: What Makes them Orthogonal?
journal, April 2019

  • Melnikov, Sergey V.; Söll, Dieter
  • International Journal of Molecular Sciences, Vol. 20, Issue 8
  • DOI: 10.3390/ijms20081929

From chemical metabolism to life: the origin of the genetic coding process
journal, January 2017