DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream

Abstract

Chemical restraints are a fundamental part of crystallographic protein structure refinement. In response to mounting evidence that conventional restraints have shortcomings, it has previously been documented that using backbone restraints that depend on the protein backbone conformation helps to address these shortcomings and improves the performance of refinements [Moriartyet al.(2014),FEBS J.281, 4061–4071]. It is important that these improvements be made available to all in the protein crystallography community. Toward this end, a change in the default geometry library used byPhenixis described here. Tests are presented showing that this change will not generate increased numbers of outliers during validation, or deposition in the Protein Data Bank, during the transition period in which some validation tools still use the conventional restraint libraries.

Authors:
 [1];  [2];  [3];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences
  2. Oregon State Univ., Corvallis, OR (United States). Dept. of Biochemistry and Biophysics
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences; Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE; National Institutes of Health (NIH)
OSTI Identifier:
1378757
Grant/Contract Number:  
AC02-05CH11231; R01-GM083136; 1P01 GM063210
Resource Type:
Accepted Manuscript
Journal Name:
Acta Crystallographica. Section D. Structural Biology
Additional Journal Information:
Journal Volume: 72; Journal Issue: 1; Journal ID: ISSN 2059-7983
Publisher:
IUCr
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; covalent geometry restraints; crystallographic refinement; protein structure; validation; Phenix

Citation Formats

Moriarty, Nigel W., Tronrud, Dale E., Adams, Paul D., and Karplus, P. Andrew. A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream. United States: N. p., 2016. Web. doi:10.1107/S2059798315022408.
Moriarty, Nigel W., Tronrud, Dale E., Adams, Paul D., & Karplus, P. Andrew. A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream. United States. https://doi.org/10.1107/S2059798315022408
Moriarty, Nigel W., Tronrud, Dale E., Adams, Paul D., and Karplus, P. Andrew. Fri . "A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream". United States. https://doi.org/10.1107/S2059798315022408. https://www.osti.gov/servlets/purl/1378757.
@article{osti_1378757,
title = {A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream},
author = {Moriarty, Nigel W. and Tronrud, Dale E. and Adams, Paul D. and Karplus, P. Andrew},
abstractNote = {Chemical restraints are a fundamental part of crystallographic protein structure refinement. In response to mounting evidence that conventional restraints have shortcomings, it has previously been documented that using backbone restraints that depend on the protein backbone conformation helps to address these shortcomings and improves the performance of refinements [Moriartyet al.(2014),FEBS J.281, 4061–4071]. It is important that these improvements be made available to all in the protein crystallography community. Toward this end, a change in the default geometry library used byPhenixis described here. Tests are presented showing that this change will not generate increased numbers of outliers during validation, or deposition in the Protein Data Bank, during the transition period in which some validation tools still use the conventional restraint libraries.},
doi = {10.1107/S2059798315022408},
journal = {Acta Crystallographica. Section D. Structural Biology},
number = 1,
volume = 72,
place = {United States},
year = {Fri Jan 01 00:00:00 EST 2016},
month = {Fri Jan 01 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Experimentally observed conformation-dependent geometry and hidden strain in proteins
journal, July 1996


The Computational Crystallography Toolbox : crystallographic algorithms in a reusable software framework
journal, January 2002

  • Grosse-Kunstleve, Ralf W.; Sauter, Nicholas K.; Moriarty, Nigel W.
  • Journal of Applied Crystallography, Vol. 35, Issue 1
  • DOI: 10.1107/S0021889801017824

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Conformation Dependence of Backbone Geometry in Proteins
journal, October 2009


Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement
journal, June 2014

  • Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.
  • FEBS Journal, Vol. 281, Issue 18
  • DOI: 10.1111/febs.12860

MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

A forward-looking suggestion for resolving the stereochemical restraints debate: ideal geometry functions
journal, February 2008

  • Karplus, P. Andrew; Shapovalov, Maxim V.; Dunbrack, Roland L.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 64, Issue 3
  • DOI: 10.1107/S0907444908002333

Proteins Do Not Have Strong Spines After All
journal, October 2009


Using a conformation-dependent stereochemical library improves crystallographic refinement of proteins
journal, June 2010

  • Tronrud, Dale E.; Berkholz, Donald S.; Karplus, P. Andrew
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 7
  • DOI: 10.1107/S0907444910019207

Towards automated crystallographic structure refinement with phenix.refine
journal, March 2012

  • Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 4
  • DOI: 10.1107/S0907444912001308

An efficient general-purpose least-squares refinement program for macromolecular structures
journal, July 1987

  • Tronrud, D. E.; Ten Eyck, L. F.; Matthews, B. W.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 43, Issue 4
  • DOI: 10.1107/S0108767387099124

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

A conformation-dependent stereochemical library improves crystallographic refinement even at atomic resolution
journal, July 2011

  • Tronrud, Dale E.; Karplus, P. Andrew
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 8
  • DOI: 10.1107/S090744491102292X

Works referencing / citing this record:

Accurate geometries for “Mountain pass” regions of the Ramachandran plot using quantum chemical calculations
journal, January 2018

  • Jiang, Zhongming; Biczysko, Malgorzata; Moriarty, Nigel W.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 86, Issue 3
  • DOI: 10.1002/prot.25451

Systematic exploration of protein conformational space using a Distance Geometry approach
journal, August 2019

  • Malliavin, Thérèse E.; Mucherino, Antonio; Lavor, Carlile
  • Journal of Chemical Information and Modeling
  • DOI: 10.1101/650903

An editor for the generation and customization of geometry restraints
journal, February 2017

  • Moriarty, Nigel W.; Draizen, Eli J.; Adams, Paul D.
  • Acta Crystallographica Section D Structural Biology, Vol. 73, Issue 2
  • DOI: 10.1107/s2059798316016570

Strategies for carbohydrate model building, refinement and validation
journal, February 2017


Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix.
text, January 2019

  • Liebschner, Dorothee; Afonine, Pavel V.; Baker, Matthew L.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.43042

Systematic Exploration of Protein Conformational Space Using a Distance Geometry Approach
journal, August 2019

  • Malliavin, Thérèse E.; Mucherino, Antonio; Lavor, Carlile
  • Journal of Chemical Information and Modeling, Vol. 59, Issue 10
  • DOI: 10.1021/acs.jcim.9b00215