DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas [Stimulated Scattering as a Remote Laser Power Sensor in High-Density and Temperature Plasmas]

Abstract

Stimulated Raman backscatter is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching stimulated Raman backscatter between a shot reducing outer versus a shot reducing inner power we infer that about half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. Furthermore, this is the first instantaneous nondisruptive measure of power transfer in an indirect drive NIF experiment using optical measurements.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [3];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. LCLS Stanford, CA (United States)
  3. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1377780
Alternate Identifier(s):
OSTI ID: 1103759
Report Number(s):
LLNL-JRNL-629872
Journal ID: ISSN 0031-9007; PRLTAO
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 111; Journal Issue: 2; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 70 PLASMA PHYSICS AND FUSION

Citation Formats

Moody, J. D., Strozzi, D. J., Divol, L., Michel, P., Robey, H. F., LePape, S., Ralph, J., Ross, J. S., Glenzer, S. H., Kirkwood, R. K., Landen, O. L., MacGowan, B. J., Nikroo, A., and Williams, E. A. Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas [Stimulated Scattering as a Remote Laser Power Sensor in High-Density and Temperature Plasmas]. United States: N. p., 2013. Web. doi:10.1103/PhysRevLett.111.025001.
Moody, J. D., Strozzi, D. J., Divol, L., Michel, P., Robey, H. F., LePape, S., Ralph, J., Ross, J. S., Glenzer, S. H., Kirkwood, R. K., Landen, O. L., MacGowan, B. J., Nikroo, A., & Williams, E. A. Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas [Stimulated Scattering as a Remote Laser Power Sensor in High-Density and Temperature Plasmas]. United States. https://doi.org/10.1103/PhysRevLett.111.025001
Moody, J. D., Strozzi, D. J., Divol, L., Michel, P., Robey, H. F., LePape, S., Ralph, J., Ross, J. S., Glenzer, S. H., Kirkwood, R. K., Landen, O. L., MacGowan, B. J., Nikroo, A., and Williams, E. A. Tue . "Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas [Stimulated Scattering as a Remote Laser Power Sensor in High-Density and Temperature Plasmas]". United States. https://doi.org/10.1103/PhysRevLett.111.025001. https://www.osti.gov/servlets/purl/1377780.
@article{osti_1377780,
title = {Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas [Stimulated Scattering as a Remote Laser Power Sensor in High-Density and Temperature Plasmas]},
author = {Moody, J. D. and Strozzi, D. J. and Divol, L. and Michel, P. and Robey, H. F. and LePape, S. and Ralph, J. and Ross, J. S. and Glenzer, S. H. and Kirkwood, R. K. and Landen, O. L. and MacGowan, B. J. and Nikroo, A. and Williams, E. A.},
abstractNote = {Stimulated Raman backscatter is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching stimulated Raman backscatter between a shot reducing outer versus a shot reducing inner power we infer that about half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. Furthermore, this is the first instantaneous nondisruptive measure of power transfer in an indirect drive NIF experiment using optical measurements.},
doi = {10.1103/PhysRevLett.111.025001},
journal = {Physical Review Letters},
number = 2,
volume = 111,
place = {United States},
year = {Tue Jul 09 00:00:00 EDT 2013},
month = {Tue Jul 09 00:00:00 EDT 2013}
}

Journal Article:

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Observation of the Density Threshold Behavior for the Onset of Stimulated Raman Scattering in High-Temperature Hohlraum Plasmas
journal, July 2009


The National Ignition Facility: Laser Performance and First Experiments
journal, April 2005

  • Moses, Edward I.; Wuest, Craig R.
  • Fusion Science and Technology, Vol. 47, Issue 3
  • DOI: 10.13182/FST47-314

Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility
journal, April 2011


Thomson-Scattering Study of the Subharmonic Decay of Ion-Acoustic Waves Driven by the Brillouin Instability
journal, July 2004


Saturation and Spectral Characteristics of the Stokes Emission in the Stimulated Brillouin Process
journal, July 1966


Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility
journal, May 2010

  • Michel, P.; Glenzer, S. H.; Divol, L.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3325733

Precision Shock Tuning on the National Ignition Facility
journal, May 2012


Backscatter measurements for NIF ignition targets (invited)
journal, October 2010

  • Moody, J. D.; Datte, P.; Krauter, K.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491035

Ultrafast X-ray Thomson Scattering of Shock-Compressed Matter
journal, October 2008


Ionization Balance in Inertial Confinement Fusion Hohlraums
journal, July 2001


Principles of Plasma Diagnostics
book, January 2009


Design and modeling of ignition targets for the National Ignition Facility
journal, June 1995

  • Haan, Steven W.; Pollaine, Stephen M.; Lindl, John D.
  • Physics of Plasmas, Vol. 2, Issue 6
  • DOI: 10.1063/1.871209

Tuning the Implosion Symmetry of ICF Targets via Controlled Crossed-Beam Energy Transfer
journal, January 2009


The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


National Ignition Campaign Hohlraum energetics
journal, May 2010

  • Meezan, N. B.; Atherton, L. J.; Callahan, D. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3354110

Energy Exchange between Femtosecond Laser Filaments in Air
journal, July 2010


Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma
journal, February 2012

  • Moody, J. D.; Michel, P.; Divol, L.
  • Nature Physics, Vol. 8, Issue 4
  • DOI: 10.1038/nphys2239

The velocity campaign for ignition on NIF
journal, May 2012

  • Callahan, D. A.; Meezan, N. B.; Glenzer, S. H.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3694840

Stochastic Ion Heating from Many Overlapping Laser Beams in Fusion Plasmas
journal, November 2012


Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation
journal, April 2012

  • Robey, H. F.; Boehly, T. R.; Celliers, P. M.
  • Physics of Plasmas, Vol. 19, Issue 4
  • DOI: 10.1063/1.3694122

National Ignition Facility laser performance status
journal, January 2007

  • Haynam, C. A.; Wegner, P. J.; Auerbach, J. M.
  • Applied Optics, Vol. 46, Issue 16
  • DOI: 10.1364/AO.46.003276

Works referencing / citing this record:

Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

Multiple-beam laser–plasma interactions in inertial confinement fusion
journal, May 2014

  • Myatt, J. F.; Zhang, J.; Short, R. W.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4878623

Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments
journal, September 2014

  • Moody, J. D.; Robey, H. F.; Celliers, P. M.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4893136

Integrated modeling of cryogenic layered highfoot experiments at the NIF
journal, May 2016

  • Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4949351

Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators
journal, May 2018

  • Kritcher, A. L.; Clark, D.; Haan, S.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5018000

Smoothing scheme for intensity sweep and polarization rotation at a subpicosecond timescale
journal, December 2019

  • Yi, Muyu; Zhong, Zheqiang; Zhang, Bin
  • Journal of the Optical Society of America B, Vol. 37, Issue 1
  • DOI: 10.1364/josab.37.000188