DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pressure effects in the itinerant antiferromagnetic metal TiAu

Abstract

In this paper, we report the pressure dependence of the Néel temperature TN up to P ≈ 27 GPa for the recently discovered itinerant antiferromagnet (IAFM) TiAu. The TN (P) phase boundary exhibits unconventional behavior in which the Néel temperature is enhanced from TN ≈ 33 K at ambient pressure to a maximum of TN ≈ 35 K occurring at P ≈ 5.5 GPa. Upon a further increase in pressure, TN is monotonically suppressed to ~22 K at P ≈ 27 GPa. We also find a crossover in the temperature dependence of the electrical resistivity ρ in the antiferromagnetic (AFM) phase that is coincident with the peak in TN(P), such that the temperature dependence of ρ = ρ0 + AnTn changes from n ≈ 3 during the enhancement of TN to n ≈ 2 during the suppression of TN. Based on an extrapolation of the TN (P) data to a possible pressure-induced quantum critical point, we estimate the critical pressure to be Pc ≈ 45 GPa.

Authors:
 [1];  [1];  [2];  [3];  [3];  [4];  [5];  [5];  [3];  [6];  [1]
  1. Univ. of California, San Diego, La Jolla, CA (United States)
  2. Univ. of California, San Diego, La Jolla, CA (United States); Vacuum Process Engineering, Sacramento, CA (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Rice Univ., Houston, TX (United States); Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)
  5. Rice Univ., Houston, TX (United States)
  6. Univ. of Alabama at Birmingham, Birmingham, AL (United States)
Publication Date:
Research Org.:
Univ. of California, San Diego, La Jolla, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1377067
Alternate Identifier(s):
OSTI ID: 1361927; OSTI ID: 1438760
Report Number(s):
LLNL-JRNL-736297
Journal ID: ISSN 2469-9950; PRBMDO; TRN: US1702812
Grant/Contract Number:  
NA0002909; AC52-07NA27344; NA0002928; 14-ERD-041
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 21; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Wolowiec, C. T., Fang, Y., McElroy, C. A., Jeffries, J. R., Stillwell, R. L., Svanidze, E., Santiago, J. M., Morosan, E., Weir, S. T., Vohra, Y. K., and Maple, M. B. Pressure effects in the itinerant antiferromagnetic metal TiAu. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.95.214403.
Wolowiec, C. T., Fang, Y., McElroy, C. A., Jeffries, J. R., Stillwell, R. L., Svanidze, E., Santiago, J. M., Morosan, E., Weir, S. T., Vohra, Y. K., & Maple, M. B. Pressure effects in the itinerant antiferromagnetic metal TiAu. United States. https://doi.org/10.1103/PhysRevB.95.214403
Wolowiec, C. T., Fang, Y., McElroy, C. A., Jeffries, J. R., Stillwell, R. L., Svanidze, E., Santiago, J. M., Morosan, E., Weir, S. T., Vohra, Y. K., and Maple, M. B. Wed . "Pressure effects in the itinerant antiferromagnetic metal TiAu". United States. https://doi.org/10.1103/PhysRevB.95.214403. https://www.osti.gov/servlets/purl/1377067.
@article{osti_1377067,
title = {Pressure effects in the itinerant antiferromagnetic metal TiAu},
author = {Wolowiec, C. T. and Fang, Y. and McElroy, C. A. and Jeffries, J. R. and Stillwell, R. L. and Svanidze, E. and Santiago, J. M. and Morosan, E. and Weir, S. T. and Vohra, Y. K. and Maple, M. B.},
abstractNote = {In this paper, we report the pressure dependence of the Néel temperature TN up to P ≈ 27 GPa for the recently discovered itinerant antiferromagnet (IAFM) TiAu. The TN (P) phase boundary exhibits unconventional behavior in which the Néel temperature is enhanced from TN ≈ 33 K at ambient pressure to a maximum of TN ≈ 35 K occurring at P ≈ 5.5 GPa. Upon a further increase in pressure, TN is monotonically suppressed to ~22 K at P ≈ 27 GPa. We also find a crossover in the temperature dependence of the electrical resistivity ρ in the antiferromagnetic (AFM) phase that is coincident with the peak in TN(P), such that the temperature dependence of ρ = ρ0 + AnTn changes from n ≈ 3 during the enhancement of TN to n ≈ 2 during the suppression of TN. Based on an extrapolation of the TN (P) data to a possible pressure-induced quantum critical point, we estimate the critical pressure to be Pc ≈ 45 GPa.},
doi = {10.1103/PhysRevB.95.214403},
journal = {Physical Review B},
number = 21,
volume = 95,
place = {United States},
year = {Wed Jun 07 00:00:00 EDT 2017},
month = {Wed Jun 07 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Superconductivity of α -Uranium and Uranium Compounds at High Pressure
journal, February 1967


On the temperature correction to the ruby pressure scale
journal, May 1991

  • Vos, Willem L.; Schouten, Jan A.
  • Journal of Applied Physics, Vol. 69, Issue 9
  • DOI: 10.1063/1.348903

Low temperature magnetic specific heat of nickel
journal, November 1966


Forced magnetostriction and pressure dependence of the magnetism of weakly ferromagnetic Y(Co 1− x Al x ) 2 and Sc 3 In
journal, April 1991

  • Riedi, P. C.; Armitage, J. G. M.; Graham, R. G.
  • Journal of Applied Physics, Vol. 69, Issue 8
  • DOI: 10.1063/1.347936

Erratum: Itinerant ferromagnetism and quantum criticality in Sc 3 In [Phys. Rev. B 66 , 020401 (2002)]
journal, April 2003


Itinerant ferromagnetism and quantum criticality in Sc 3 In
journal, June 2002


Ferromagnetism in Solid Solutions of Scandium and Indium
journal, July 1961

  • Matthias, B. T.; Clogston, A. M.; Williams, H. J.
  • Physical Review Letters, Vol. 7, Issue 1
  • DOI: 10.1103/PhysRevLett.7.7

Superconducting manometers for high pressure measurement at low temperature
journal, February 1969


Non-Fermi Liquid Behavior Close to a Quantum Critical Point in a Ferromagnetic State without Local Moments
journal, March 2015


Pressure Dependence of the Superconducting Transition Temperature of Uranium
journal, November 1965


Resistive Anomalies at Magnetic Critical Points
journal, March 1968


An itinerant antiferromagnetic metal without magnetic constituents
journal, July 2015

  • Svanidze, E.; Wang, Jiakui K.; Besara, T.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8701

Spin-density-wave antiferromagnetism in chromium
journal, January 1988


Magnetic properties of ZrZn2 under pressure
journal, January 1975


Forced magnetostriction in the band model of magnetism
journal, January 1969


Structure-dependent ferromagnetism in Au 4 V studied under high pressure
journal, November 2006


Neutron diffraction study under pressure of the heavy-fermion compound Ce Pd 2 Si 2
journal, February 2005


Ferromagnetism of a Zirconium-Zinc Compound
journal, January 1958


Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
journal, January 1986

  • Mao, H. K.; Xu, J.; Bell, P. M.
  • Journal of Geophysical Research, Vol. 91, Issue B5, p. 4673-4676
  • DOI: 10.1029/JB091iB05p04673

Spin Fluctuations in Itinerant Electron Magnetism
book, January 1985


Analysis of ferromagnetic and antiferro-magnetic second-order transitions
journal, September 1956


Electrical Resistivity of Antiferromagnetic Metals
journal, November 1977


Works referencing / citing this record:

Effects of chemical disorder in the itinerant antiferromagnet Ti 1− x V x Au
journal, August 2018

  • Huang, C-L; Santiago, J. M.; Svanidze, E.
  • Journal of Physics: Condensed Matter, Vol. 30, Issue 36
  • DOI: 10.1088/1361-648x/aad832