skip to main content


Title: Multislice does it all—calculating the performance of nanofocusing X-ray optics

Here, we describe an approach to calculating the optical performance of a wide range of nanofocusing X-ray optics using multislice scalar wave propagation with a complex X-ray refractive index. This approach produces results indistinguishable from methods such as coupled wave theory, and it allows one to reproduce other X-ray optical phenomena such as grazing incidence reflectivity where the direction of energy flow is changed significantly. Just as finite element analysis methods allow engineers to compute the thermal and mechanical responses of arbitrary structures too complex to model by analytical approaches, multislice propagation can be used to understand the properties of the real-world optics of finite extent and with local imperfections, allowing one to better understand the limits to nanoscale X-ray imaging.
 [1] ;  [2] ;  [3]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Optics Express
Additional Journal Information:
Journal Volume: 25; Journal Issue: 3; Journal ID: ISSN 1094-4087
Optical Society of America (OSA)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; Computational electromagnetic methods; Wave propagation; X-ray microscopy; X-ray optics
OSTI Identifier: