DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Normal state above the upper critical field in Fe 1 + y Te 1 - x ( Se , S ) x

Abstract

Here, we have investigated the magnetotransport above the upper critical field ( H c 2 ) in Fe 1.14 Te 0.7 Se 0.3 , Fe 1.02 Te 0.61 Se 0.39 , Fe 1.05 Te 0.89 Se 0.11 , and Fe 1.06 Te 0.86 S 0.14 . The μ SR measurements confirm electronic phase separation in Fe 1.06 Te 0.86 S 0.14 , similar to Fe 1 + y Te 1 - x Se x . We found that superconductivity is suppressed in high magnetic fields above 60 T, allowing us to gain insight into the normal-state properties below the zero-field superconducting transition temperature ( T c ). We also show that the resistivity of Fe 1.14 Te 0.7 Se 0.3 and Fe 1.02 Te 0.61 Se 0.39 above H c 2 is metallic as T → 0 , just like the normal-state resistivity above T c . On the other hand, the normal-state resistivity in Fe 1.05 Te 0.89 Se 0.11 and Fe 1.06 Te 0.86 S 0.14 is nonmetallic down to lowest temperatures, reflecting the superconductor-insulator transition due to electronic phase separation.

Authors:
 [1];  [2];  [3];  [3];  [1];  [3];  [4];  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Dept.
  2. Helmholtz-Zentrum Berlin (HZB), (Germany). Hochfeld Magnetlabor Dresden (HLD-EMFL)
  3. Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Muon Spin Spectroscopy
  4. Helmholtz-Zentrum Berlin (HZB), (Germany). Hochfeld Magnetlabor Dresden (HLD-EMFL); Technical Univ. Dresden (Germany). Inst. for Solid State Physics
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1372446
Alternate Identifier(s):
OSTI ID: 1355072
Report Number(s):
BNL-114042-2017-JA
Journal ID: ISSN 2469-9950; PRBMDO; R&D Project: PM016; KC0201050; TRN: US1702670
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 18; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Wang, Aifeng, Kampert, Erik, Saadaoui, H., Luetkens, H., Hu, Rongwei, Morenzoni, E., Wosnitza, J., and Petrovic, C. Normal state above the upper critical field in Fe1+yTe1-x(Se,S)x. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.95.184504.
Wang, Aifeng, Kampert, Erik, Saadaoui, H., Luetkens, H., Hu, Rongwei, Morenzoni, E., Wosnitza, J., & Petrovic, C. Normal state above the upper critical field in Fe1+yTe1-x(Se,S)x. United States. https://doi.org/10.1103/PhysRevB.95.184504
Wang, Aifeng, Kampert, Erik, Saadaoui, H., Luetkens, H., Hu, Rongwei, Morenzoni, E., Wosnitza, J., and Petrovic, C. Wed . "Normal state above the upper critical field in Fe1+yTe1-x(Se,S)x". United States. https://doi.org/10.1103/PhysRevB.95.184504. https://www.osti.gov/servlets/purl/1372446.
@article{osti_1372446,
title = {Normal state above the upper critical field in Fe1+yTe1-x(Se,S)x},
author = {Wang, Aifeng and Kampert, Erik and Saadaoui, H. and Luetkens, H. and Hu, Rongwei and Morenzoni, E. and Wosnitza, J. and Petrovic, C.},
abstractNote = {Here, we have investigated the magnetotransport above the upper critical field ( H c 2 ) in Fe 1.14 Te 0.7 Se 0.3 , Fe 1.02 Te 0.61 Se 0.39 , Fe 1.05 Te 0.89 Se 0.11 , and Fe 1.06 Te 0.86 S 0.14 . The μ SR measurements confirm electronic phase separation in Fe 1.06 Te 0.86 S 0.14 , similar to Fe 1 + y Te 1 - x Se x . We found that superconductivity is suppressed in high magnetic fields above 60 T, allowing us to gain insight into the normal-state properties below the zero-field superconducting transition temperature ( T c ). We also show that the resistivity of Fe 1.14 Te 0.7 Se 0.3 and Fe 1.02 Te 0.61 Se 0.39 above H c 2 is metallic as T → 0 , just like the normal-state resistivity above T c . On the other hand, the normal-state resistivity in Fe 1.05 Te 0.89 Se 0.11 and Fe 1.06 Te 0.86 S 0.14 is nonmetallic down to lowest temperatures, reflecting the superconductor-insulator transition due to electronic phase separation.},
doi = {10.1103/PhysRevB.95.184504},
journal = {Physical Review. B},
number = 18,
volume = 95,
place = {United States},
year = {Wed May 03 00:00:00 EDT 2017},
month = {Wed May 03 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Insulator-Metal Crossover near Optimal Doping in Pr 2 x Ce x CuO 4 : Anomalous Normal-State Low Temperature Resistivity
journal, November 1998


Universality of the Mott–Ioffe–Regel limit in metals
journal, September 2004


The Critical Fluctuation of the Order Parameter in Type-II Superconductors
journal, April 1968


Critical Fluctuation of the Order Parameter in a Superconductor. I
journal, August 1968


Fe 57 Mössbauer study of magnetic ordering in superconducting K 0 . 80 Fe 1 . 76 Se 2 . 00 single crystals
journal, March 2011


Low-temperature insulating phases of uniformly disordered two-dimensional superconductors
journal, September 1992


Normal state charge dynamics of Fe 1.06 Te 0.88 S 0.14 superconductor probed with infrared spectroscopy
journal, May 2010


Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity
journal, October 2013

  • Davis, J. C. S.; Lee, D. -H.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 44
  • DOI: 10.1073/pnas.1316512110

Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity
journal, October 2008


Phase separation in the iron chalcogenide superconductor Fe 1+ y Te x Se 1− x
journal, May 2011


Pauli-limited upper critical field of Fe 1 + y Te 1 x Se x
journal, March 2010


Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2
journal, January 2012

  • Yuan, R. H.; Dong, T.; Song, Y. J.
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00221

The hybrid lattice of KxFe2−ySe2: where superconductivity and magnetism coexist
journal, June 2013

  • Louca, Despina; Park, Keeseong; Li, Bing
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02047

Nonmetallic Low-Temperature Normal State of K 0.7 Fe 1.46 Se 1.85 Te 0.15
journal, July 2014


Multiband transport and nonmetallic low-temperature state of K 0.50 Na 0.24 Fe 1.52 Se 2
journal, July 2014


Multiband magnetism and superconductivity in Fe-based compounds
journal, February 2009


Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure
journal, June 2009

  • Medvedev, S.; McQueen, T. M.; Troyan, I. A.
  • Nature Materials, Vol. 8, Issue 8
  • DOI: 10.1038/nmat2491

Quantum Metallicity on the High-Field Side of the Superconductor-Insulator Transition
journal, March 2007


Musrfit: A Free Platform-Independent Framework for μSR Data Analysis
journal, January 2012


Nuclear materials in Japan
journal, February 2015


Insulator-to-Metal Crossover in the Normal State of La 2 x Sr x CuO 4 Near Optimum Doping
journal, December 1996


Local atomic structure of superconducting FeSe 1 x Te x
journal, April 2010


Superconductivity in the iron selenide K x Fe 2 Se 2 ( 0 x 1.0 )
journal, November 2010


Anisotropy in transport and magnetic properties of K 0 . 64 Fe 1 . 44 Se 2
journal, May 2011


Upper Critical Field and Kondo Effects in Fe(Te0.9Se0.1) Thin Films by Pulsed Field Measurements
journal, February 2016

  • Salamon, Myron B.; Cornell, Nicholas; Jaime, Marcelo
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21469

Insulator-Superconductor Transition in 3D Granular Al-Ge Films
journal, June 1997


Tellurium substitution effect on superconductivity of the α-phase iron selenide
journal, October 2008


Anion height dependence of T c for the Fe-based superconductor
journal, April 2010


Microwave, Flux Flow, and Fluctuation Resistance of Dirty Type-II Superconductors
journal, January 1970


Theory of the evolution of magnetic order in Fe 1 + y Te compounds with increasing interstitial iron
journal, October 2014

  • Ducatman, Samuel; Fernandes, Rafael M.; Perkins, Natalia B.
  • Physical Review B, Vol. 90, Issue 16
  • DOI: 10.1103/PhysRevB.90.165123

Metal-to-Insulator Crossover in the Low-Temperature Normal State of Bi 2 Sr 2 x La x CuO 6 + δ
journal, July 2000


Semiconductor-superconductor transition in granular Al-Ge
journal, April 1983


Archimedean solidlike superconducting framework in phase-separated K 0.8 F e 1.6 + x S e 2 ( 0 x 0.15 )
journal, February 2015


Nanoscale chemical phase separation in FeTe 0.55 Se 0.45 as seen via scanning tunneling spectroscopy
journal, June 2011


Anisotropic normal-state transport properties predicted and analyzed for high- T c oxide superconductors
journal, May 1988

  • Allen, Philip B.; Pickett, Warren E.; Krakauer, Henry
  • Physical Review B, Vol. 37, Issue 13
  • DOI: 10.1103/PhysRevB.37.7482

Superconductor–insulator quantum phase transition
journal, January 2010


Selective Mott Physics as a Key to Iron Superconductors
journal, April 2014


Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity
journal, August 2015

  • Zaliznyak, Igor; Savici, Andrei T.; Lumsden, Mark
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 33
  • DOI: 10.1073/pnas.1503559112

Coexistence of incommensurate magnetism and superconductivity in Fe 1 + y Se x Te 1 x
journal, October 2009


Density functional study of excess Fe in Fe 1 + x Te : Magnetism and doping
journal, January 2009


Superconductivity, magnetism, and stoichiometry of single crystals of Fe 1 + y ( Te 1 x S x ) z
journal, December 2009


Superconductivity in the PbO-type structure  -FeSe
journal, September 2008

  • Hsu, F. -C.; Luo, J. -Y.; Yeh, K. -W.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 38
  • DOI: 10.1073/pnas.0807325105

Anisotropy in the upper critical field of FeSe and FeSe 0.33 Te 0.67 single crystals
journal, February 2015


Magnetic-field-induced log- T insulating behavior in the resistivity of fluorine-doped SmFeAsO 1 x F x
journal, June 2009


Strong Correlations and Magnetic Frustration in the High T c Iron Pnictides
journal, August 2008


Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ
journal, January 2002

  • Lang, K. M.; Madhavan, V.; Hoffman, J. E.
  • Nature, Vol. 415, Issue 6870
  • DOI: 10.1038/415412a

Random alloy-like local structure of Fe(Se, S) 1− x Te x superconductors revealed by extended x-ray absorption fine structure
journal, October 2011


Superconductor-insulator transition in two-dimensional dirty boson systems
journal, May 1994


Temperature dependence of the upper critical field of FeSe single crystals
journal, April 2013


Pressure-induced high- T c superconducting phase in FeSe: Correlation between anion height and T c
journal, May 2010


Colloquium : Saturation of electrical resistivity
journal, October 2003


Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides
journal, September 2011

  • Yin, Z. P.; Haule, K.; Kotliar, G.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3120

Granular electronic systems
journal, April 2007

  • Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M.
  • Reviews of Modern Physics, Vol. 79, Issue 2
  • DOI: 10.1103/RevModPhys.79.469

Evidence of local structural inhomogeneity in FeSe 1 x Te x from extended x-ray absorption fine structure
journal, July 2010


A Novel Large Moment Antiferromagnetic Order in K 0.8 Fe 1.6 Se 2 Superconductor
journal, August 2011


Effects of excess Fe on upper critical field and magnetotransport in Fe 1 + y ( Te 1 x S x ) z
journal, May 2010


High-temperature resistivity in the iron pnictides and the electron-doped cuprates
journal, June 2011


Influence of microstructure on superconductivity in KxFe2−ySe2 and evidence for a new parent phase K2Fe7Se8
journal, May 2013

  • Ding, Xiaxin; Fang, Delong; Wang, Zhenyu
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2913

Relationship between Structure and Superconductivity in FeSe 1- x Te x
journal, July 2009

  • Horigane, Kazumasa; Hiraka, Haruhiro; Ohoyama, Kenji
  • Journal of the Physical Society of Japan, Vol. 78, Issue 7
  • DOI: 10.1143/JPSJ.78.074718

Disorder-driven electronic localization and phase separation in superconducting Fe 1 + y Te 0.5 Se 0.5 single crystals
journal, October 2010


Magnetism and its microscopic origin in iron-based high-temperature superconductors
journal, October 2012

  • Dai, Pengcheng; Hu, Jiangping; Dagotto, Elbio
  • Nature Physics, Vol. 8, Issue 10
  • DOI: 10.1038/nphys2438

First-order magnetic and structural phase transitions in Fe 1 + y Se x Te 1 x
journal, February 2009


Doping evolution of the magnetic susceptibility and transport properties of Fe 1 + δ Te 1 − x Se x single crystals
journal, January 2011


Evidence of Strong Correlations and Coherence-Incoherence Crossover in the Iron Pnictide Superconductor KFe 2 As 2
journal, July 2013


Phase separation and magnetic order in K-doped iron selenide superconductor
journal, November 2011

  • Li, Wei; Ding, Hao; Deng, Peng
  • Nature Physics, Vol. 8, Issue 2
  • DOI: 10.1038/nphys2155

Unconventional Temperature Enhanced Magnetism in Fe 1.1 Te
journal, November 2011


Works referencing / citing this record:

Some Properties of Fe1 +ySexTe1 –x Single Crystals in the Superconducting and Normal States
journal, October 2018

  • Vedeneev, S. I.; Golubkov, M. V.; Gorina, Yu. I.
  • Journal of Experimental and Theoretical Physics, Vol. 127, Issue 4
  • DOI: 10.1134/s1063776118090200