DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: How Cubic Can Ice Be?

Abstract

Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ± 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. The high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.

Authors:
 [1];  [1];  [1];  [2];  [3]; ORCiD logo [4];  [2];  [5];  [6];  [7];  [8];  [6];  [2];  [9]; ORCiD logo [2]; ORCiD logo [10]
  1. William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210, United States
  2. Stanford PULSE Institute, SLAC National Acceleratory Laboratory, Menlo Park, California 94025, United States
  3. Stanford PULSE Institute, SLAC National Acceleratory Laboratory, Menlo Park, California 94025, United States, Department of Physics, National University of Singapore, Singapore 117557
  4. Stanford PULSE Institute, SLAC National Acceleratory Laboratory, Menlo Park, California 94025, United States, Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden, Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden, SUNCAT Center for Interface Science & Catalysis, SLAC National Laboratory, Menlo Park, California 94025, United States
  5. SUNCAT Center for Interface Science & Catalysis, SLAC National Laboratory, Menlo Park, California 94025, United States, Department of Chemistry, Stanford University, Stanford, California 94305, United States
  6. Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
  7. Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States, Brookhaven National Laboratory, Upton, New York 11973, United States
  8. Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States, National Science Foundation BioXFEL Science and Technology Center, Buffalo, New York 14203, United States
  9. Stanford PULSE Institute, SLAC National Acceleratory Laboratory, Menlo Park, California 94025, United States, Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
  10. William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210, United States, Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1368595
Alternate Identifier(s):
OSTI ID: 1368366; OSTI ID: 1372318
Grant/Contract Number:  
CHE-1213959; CHE-1464924; AC02-76SF00515; AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Name: Journal of Physical Chemistry Letters Journal Volume: 8 Journal Issue: 14; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Amaya, Andrew J., Pathak, Harshad, Modak, Viraj P., Laksmono, Hartawan, Loh, N. Duane, Sellberg, Jonas A., Sierra, Raymond G., McQueen, Trevor A., Hayes, Matt J., Williams, Garth J., Messerschmidt, Marc, Boutet, Sébastien, Bogan, Michael J., Nilsson, Anders, Stan, Claudiu A., and Wyslouzil, Barbara E. How Cubic Can Ice Be?. United States: N. p., 2017. Web. doi:10.1021/acs.jpclett.7b01142.
Amaya, Andrew J., Pathak, Harshad, Modak, Viraj P., Laksmono, Hartawan, Loh, N. Duane, Sellberg, Jonas A., Sierra, Raymond G., McQueen, Trevor A., Hayes, Matt J., Williams, Garth J., Messerschmidt, Marc, Boutet, Sébastien, Bogan, Michael J., Nilsson, Anders, Stan, Claudiu A., & Wyslouzil, Barbara E. How Cubic Can Ice Be?. United States. https://doi.org/10.1021/acs.jpclett.7b01142
Amaya, Andrew J., Pathak, Harshad, Modak, Viraj P., Laksmono, Hartawan, Loh, N. Duane, Sellberg, Jonas A., Sierra, Raymond G., McQueen, Trevor A., Hayes, Matt J., Williams, Garth J., Messerschmidt, Marc, Boutet, Sébastien, Bogan, Michael J., Nilsson, Anders, Stan, Claudiu A., and Wyslouzil, Barbara E. Fri . "How Cubic Can Ice Be?". United States. https://doi.org/10.1021/acs.jpclett.7b01142.
@article{osti_1368595,
title = {How Cubic Can Ice Be?},
author = {Amaya, Andrew J. and Pathak, Harshad and Modak, Viraj P. and Laksmono, Hartawan and Loh, N. Duane and Sellberg, Jonas A. and Sierra, Raymond G. and McQueen, Trevor A. and Hayes, Matt J. and Williams, Garth J. and Messerschmidt, Marc and Boutet, Sébastien and Bogan, Michael J. and Nilsson, Anders and Stan, Claudiu A. and Wyslouzil, Barbara E.},
abstractNote = {Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ± 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. The high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.},
doi = {10.1021/acs.jpclett.7b01142},
journal = {Journal of Physical Chemistry Letters},
number = 14,
volume = 8,
place = {United States},
year = {Fri Jun 30 00:00:00 EDT 2017},
month = {Fri Jun 30 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.jpclett.7b01142

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Stability of Cubic Ice in Mesopores
journal, February 2009

  • Morishige, Kunimitsu; Yasunaga, Hiroaki; Uematsu, Hiroaki
  • The Journal of Physical Chemistry C, Vol. 113, Issue 8
  • DOI: 10.1021/jp8088935

A General Recursion Method for Calculating Diffracted Intensities from Crystals Containing Planar Faults
journal, June 1991

  • Treacy, M. M. J.; Newsam, J. M.; Deem, M. W.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 433, Issue 1889
  • DOI: 10.1098/rspa.1991.0062

The formation of cubic ice under conditions relevant to Earth's atmosphere
journal, March 2005

  • Murray, Benjamin J.; Knopf, Daniel A.; Bertram, Allan K.
  • Nature, Vol. 434, Issue 7030
  • DOI: 10.1038/nature03403

Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K
journal, December 2016

  • Xu, Yuntao; Petrik, Nikolay G.; Smith, R. Scott
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 52
  • DOI: 10.1073/pnas.1611395114

Enhanced formation of cubic ice in aqueous organic acid droplets
journal, April 2008


Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds
journal, January 1991

  • Rangno, Arthur L.; Hobbs, Peter V.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 117, Issue 497
  • DOI: 10.1002/qj.49711749710

Strong dependence of cubic ice formation on droplet ammonium to sulfate ratio: STRONG DEPENDENCE OF CUBIC ICE FORMATION
journal, August 2007

  • Murray, Benjamin J.; Bertram, Allan K.
  • Geophysical Research Letters, Vol. 34, Issue 16
  • DOI: 10.1029/2007GL030471

Extent and relevance of stacking disorder in "ice Ic"
journal, December 2012

  • Kuhs, W. F.; Sippel, C.; Falenty, A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 52
  • DOI: 10.1073/pnas.1210331110

Review of the vapour pressures of ice and supercooled water for atmospheric applications
journal, April 2005

  • Murphy, D. M.; Koop, T.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 131, Issue 608
  • DOI: 10.1256/qj.04.94

First lasing and operation of an ångstrom-wavelength free-electron laser
journal, August 2010


Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature
journal, June 2014

  • Sellberg, J. A.; Huang, C.; McQueen, T. A.
  • Nature, Vol. 510, Issue 7505
  • DOI: 10.1038/nature13266

Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds
journal, January 2006

  • Shilling, J. E.; Tolbert, M. A.; Toon, O. B.
  • Geophysical Research Letters, Vol. 33, Issue 17
  • DOI: 10.1029/2006GL026671

Critical Radius of Supercooled Water Droplets: On the Transition toward Dendritic Freezing
journal, January 2016

  • Buttersack, Tillmann; Bauerecker, Sigurd
  • The Journal of Physical Chemistry B, Vol. 120, Issue 3
  • DOI: 10.1021/acs.jpcb.5b09913

Homogeneous ice nucleation from supercooled water
journal, January 2011

  • Li, Tianshu; Donadio, Davide; Russo, Giovanna
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 44
  • DOI: 10.1039/c1cp22167a

Stacking disorder in ice I
journal, January 2015

  • Malkin, Tamsin L.; Murray, Benjamin J.; Salzmann, Christoph G.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 1
  • DOI: 10.1039/C4CP02893G

Is it cubic? Ice crystallization from deeply supercooled water
journal, January 2011

  • Moore, Emily B.; Molinero, Valeria
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 44
  • DOI: 10.1039/c1cp22022e

Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice: DEHYDRATION IN COLD CLOUDS
journal, December 2003


Formation and stability of cubic ice in water droplets
journal, January 2006

  • Murray, Benjamin J.; Bertram, Allan K.
  • Phys. Chem. Chem. Phys., Vol. 8, Issue 1
  • DOI: 10.1039/B513480C

Free energy contributions and structural characterization of stacking disordered ices
journal, January 2016

  • Hudait, Arpa; Qiu, Siwei; Lupi, Laura
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 14
  • DOI: 10.1039/C6CP00915H

Trigonal Ice Crystals in Earth’s Atmosphere
journal, September 2015

  • Murray, Benjamin J.; Salzmann, Christoph G.; Heymsfield, Andrew J.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 9
  • DOI: 10.1175/BAMS-D-13-00128.1

Computational investigation of surface freezing in a molecular model of water
journal, March 2017

  • Haji-Akbari, Amir; Debenedetti, Pablo G.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 13
  • DOI: 10.1073/pnas.1620999114

Non-equilibrium solidification of undercooled metallic metls
journal, August 1994


HIGH-RESOLUTION NEUTRON POWDER DIFFRACTION STUDY OF ICE I c
journal, March 1987

  • Kuhs, W. F.; Bliss, D. V.; Finney, J. L.
  • Le Journal de Physique Colloques, Vol. 48, Issue C1
  • DOI: 10.1051/jphyscol:1987187

Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”
journal, July 2015

  • Laksmono, Hartawan; McQueen, Trevor A.; Sellberg, Jonas A.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 14
  • DOI: 10.1021/acs.jpclett.5b01164

Structure of ice crystallized from supercooled water
journal, January 2012

  • Malkin, T. L.; Murray, B. J.; Brukhno, A. V.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 4
  • DOI: 10.1073/pnas.1113059109

Freezing water in no-man's land
journal, January 2012

  • Manka, Alexandra; Pathak, Harshad; Tanimura, Shinobu
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 13
  • DOI: 10.1039/c2cp23116f

Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet
journal, March 2003

  • Hindmarsh, J. P.; Russell, A. B.; Chen, X. D.
  • International Journal of Heat and Mass Transfer, Vol. 46, Issue 7
  • DOI: 10.1016/S0017-9310(02)00399-X

Direct calculation of ice homogeneous nucleation rate for a molecular model of water
journal, August 2015

  • Haji-Akbari, Amir; Debenedetti, Pablo G.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 34
  • DOI: 10.1073/pnas.1509267112

What Determines the Ice Polymorph in Clouds?
journal, July 2016

  • Hudait, Arpa; Molinero, Valeria
  • Journal of the American Chemical Society, Vol. 138, Issue 28
  • DOI: 10.1021/jacs.6b05227

Homogeneous nucleation and the Ostwald step rule
journal, January 1999

  • Rein ten Wolde, Pieter; Frenkel, Daan
  • Physical Chemistry Chemical Physics, Vol. 1, Issue 9
  • DOI: 10.1039/a809346f

Crystallization, Melting, and Structure of Water Nanoparticles at Atmospherically Relevant Temperatures
journal, April 2012

  • Johnston, Jessica C.; Molinero, Valeria
  • Journal of the American Chemical Society, Vol. 134, Issue 15
  • DOI: 10.1021/ja210878c

Interpretation of Experimentally Determined Growth Rates of Ice Crystals in Supercooled Water
journal, September 1967

  • Pruppacher, H. R.
  • The Journal of Chemical Physics, Vol. 47, Issue 5
  • DOI: 10.1063/1.1712169

The proper structure of cubic ice confined in mesopores
journal, January 2005

  • Morishige, Kunimitsu; Uematsu, Hiroaki
  • The Journal of Chemical Physics, Vol. 122, Issue 4
  • DOI: 10.1063/1.1836756

The Coherent X-ray Imaging instrument at the Linac Coherent Light Source
journal, April 2015

  • Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc
  • Journal of Synchrotron Radiation, Vol. 22, Issue 3
  • DOI: 10.1107/S160057751500449X

Ice nucleation at the nanoscale probes no man’s land of water
journal, May 2013

  • Li, Tianshu; Donadio, Davide; Galli, Giulia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2918

Halo observations provide evidence of airborne cubic ice in the Earth’s atmosphere
journal, January 2000

  • Riikonen, Marko; Sillanpää, Mika; Virta, Leena
  • Applied Optics, Vol. 39, Issue 33
  • DOI: 10.1364/AO.39.006080

A microfluidic apparatus for the study of ice nucleation in supercooled water drops
journal, January 2009

  • Stan, Claudiu A.; Schneider, Grégory F.; Shevkoplyas, Sergey S.
  • Lab on a Chip, Vol. 9, Issue 16
  • DOI: 10.1039/b906198c

The crystal structure of ice under mesospheric conditions
journal, May 2015

  • Murray, Benjamin J.; Malkin, Tamsin L.; Salzmann, Christoph G.
  • Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 127
  • DOI: 10.1016/j.jastp.2014.12.005

Homogeneous Freezing of Water Starts in the Subsurface
journal, September 2006

  • Vrbka, Luboš; Jungwirth, Pavel
  • The Journal of Physical Chemistry B, Vol. 110, Issue 37
  • DOI: 10.1021/jp064021c

Nonisothermal Droplet Growth in the Free Molecular Regime
journal, December 2013


Cryoflotation: Densities of Amorphous and Crystalline Ices
journal, December 2011

  • Loerting, Thomas; Bauer, Marion; Kohl, Ingrid
  • The Journal of Physical Chemistry B, Vol. 115, Issue 48
  • DOI: 10.1021/jp204752w

The polymorphism of ice: five unresolved questions
journal, January 2011

  • Salzmann, Christoph G.; Radaelli, Paolo G.; Slater, Ben
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 41
  • DOI: 10.1039/c1cp21712g

Formation and annealing of cubic ice: I. Modelling of stacking faults
journal, June 2008


Formation and annealing of cubic ice: II. Kinetic study
journal, June 2008


Experimental evidence for surface freezing in supercooled n-alkane nanodroplets
journal, January 2013

  • Modak, Viraj P.; Pathak, Harshad; Thayer, Mitchell
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 18
  • DOI: 10.1039/c3cp44490b

Structural biology at the European X-ray free-electron laser facility
journal, July 2014

  • Altarelli, Massimo; Mancuso, Adrian P.
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 369, Issue 1647
  • DOI: 10.1098/rstb.2013.0311

Kinetics of Homogeneous Nucleation in the Freezing of Large Water Clusters
journal, March 1995

  • Huang, Jinfan; Bartell, Lawrence S.
  • The Journal of Physical Chemistry, Vol. 99, Issue 12
  • DOI: 10.1021/j100012a010

Studien über die Bildung und Umwandlung fester Körper
journal, January 1897