skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: redMaGiC: Selecting luminous red galaxies from the DES Science Verification data

Abstract

Here, we introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ϵ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10–3 (h–1 Mpc)–3, and a median photo-z bias (zspec – zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [6];  [7];  [7];  [2];  [8];  [7];  [9];  [4];  [7];  [10];  [11];  [7];  [12];  [2] more »;  [13];  [14];  [15];  [16];  [17];  [4];  [18];  [19];  [13];  [20];  [21];  [22];  [12];  [23];  [7];  [24];  [25];  [26];  [12];  [4];  [27];  [4];  [25];  [28];  [29];  [16];  [30];  [8];  [10];  [31];  [32];  [12];  [7];  [33];  [34];  [14];  [10];  [30];  [30];  [25];  [35];  [36];  [13];  [12];  [37];  [14];  [38];  [39];  [2];  [10];  [40];  [41];  [25];  [42];  [8];  [12];  [43];  [30];  [44];  [45];  [13];  [46];  [47];  [8];  [12];  [25];  [14] « less
  1. Univ. of Arizona, Tucson, AZ (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Univ. Autonoma de Barcelona, Barcelona (Spain)
  4. Institut de Ciencies de l'Espai, Barcelona (Spain)
  5. Stanford Univ., Stanford, CA (United States); ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW (Australia); Univ. of Queensland (Australia)
  6. Ludwig-Maximilians Univ. Munchen, Munchen (Germany)
  7. Univ. College London, London (United Kingdom)
  8. National Optical Astronomy Observatory, La Serena (Chile)
  9. Univ. of Cambridge, Cambridge (United Kingdom)
  10. Univ. of Pennsylvania, Philadelphia, PA (United States)
  11. Institut d'Astrophysique de Paris, Paris (France)
  12. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  13. Univ. of Portsmouth, Portsmouth (United Kingdom)
  14. Lab. Interinstitucional de e-Astronomia - LIneA, Rio de Janeiro (Brazil); Observatorio Nacional, Rio de Janeiro (Brazil)
  15. Univ. of Notre Dame, Notre Dame, IN (United States)
  16. Univ. of Illinois, Urbana, IL (United States); National Center for Supercomputing Applications, Urbana, IL (United States)
  17. Univ. Autonoma de Barcelona, Barcelona (Spain); Institut de Ciencies de l'Espai, Barcelona (Spain)
  18. Australian National Univ., Canberra, ACT (Australia)
  19. Stanford Univ., Stanford, CA (United States)
  20. Stanford Univ., Stanford, CA (United States); ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW (Australia); Univ. of Queensland, Queensland (Australia)
  21. Texas A & M Univ., College Station, TX (United States)
  22. Excellence Cluster Universe, Garching (Germany); Ludwig-Maximilians Univ., Munich (Germany)
  23. Ludwig-Maximilians Univ. Munchen, Munchen (Germany); Excellence Cluster Universe, Garching (Germany)
  24. Univ. of Pennsylvania, Philadelphia, PA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States)
  25. Univ. of Michigan, Ann Arbor, MI (United States)
  26. Lab. Interinstitucional de e-Astonomia - LIneA, Rio de Janeiro (Brazil)
  27. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, Chicago, IL (United States)
  28. Swinburne Univ. of Technology (Australia)
  29. Ludwig-Maximilians Univ. Munchen, Munchen (Germany); Max Planck Institute for Extraterrestrial Physics, Garching (Germany)
  30. The Ohio State Univ., Columbus, OH (United States)
  31. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  32. Australian Astronomical Observatory, North Ryde, NSW (Australia)
  33. ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW (Australia); Australian Astronomical Observatory, North Ryde, NSW (Australia)
  34. Lab. Interinstitucional de e-Astronomia - LIneA, Rio de Janeiro (Brazil); Univ. de Sao Paulo, Sao Paulo (Brazil)
  35. Univ. Autonoma de Barcelona, Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain)
  36. Excellence Cluster Univ., Garching (Germany); Ludwig-Maximilians Univ., Munich (Germany); Max Planck Institute for Extraterrestrial Physics, Garching (Germany)
  37. Univ. of Queensland, Queensland (Australia)
  38. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  39. Univ. of Sussex, Brighton (United Kingdom)
  40. Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)
  41. Lab. Interinstitucional de e-Astronomia - LIneA, Rio de Janeiro (Brazil)
  42. Univ. of Illinois, Urbana, IL (United States); Centro de Investigaciones Energeticas, Madrid (Spain)
  43. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lab. Interinstitucional de e-Astronomia - LIneA, Rio de Janeiro (Brazil)
  44. National Center for Supercomputing Applications, Urbana, IL (United States)
  45. Univ. of Illinois, Urbana, IL (United States)
  46. ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW (Australia); Swineburne Univ. of Technology, VIC (Australia)
  47. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); University of Chicago - Kavli Institute for Cosmological Physics; Ohio State University
OSTI Identifier:
1371551
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 461; Journal Issue: 2; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; methods: statistical; techniques: photometric; galaxies: general

Citation Formats

Rozo, E., Rykoff, E. S., Abate, A., Bonnett, C., Crocce, M., Davis, C., Hoyle, B., Leistedt, B., Peiris, H. V., Wechsler, R. H., Abbott, T., Abdalla, F. B., Banerji, M., Bauer, A. H., Benoit-Levy, A., Bernstein, G. M., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Carollo, D., Kind, M. Carrasco, Carretero, J., Castander, F. J., Childress, M. J., Cunha, C. E., D'Andrea, C. B., Davis, T., DePoy, D. L., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D. W., Glazebrook, K., Gruen, D., Gruendl, R. A., Honscheid, K., James, D. J., Jarvis, M., Kim, A. G., Kuehn, K., Kuropatkin, N., Lahav, O., Lidman, C., Lima, M., Maia, M. A. G., March, M., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., O'Neill, C. R., Ogando, R., Plazas, A. A., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Santiago, B., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Thaler, J., Thomas, D., Uddin, S., Vikram, V., Walker, A. R., Wester, W., Zhang, Y., and da Costa, L. N. redMaGiC: Selecting luminous red galaxies from the DES Science Verification data. United States: N. p., 2016. Web. doi:10.1093/mnras/stw1281.
Rozo, E., Rykoff, E. S., Abate, A., Bonnett, C., Crocce, M., Davis, C., Hoyle, B., Leistedt, B., Peiris, H. V., Wechsler, R. H., Abbott, T., Abdalla, F. B., Banerji, M., Bauer, A. H., Benoit-Levy, A., Bernstein, G. M., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Carollo, D., Kind, M. Carrasco, Carretero, J., Castander, F. J., Childress, M. J., Cunha, C. E., D'Andrea, C. B., Davis, T., DePoy, D. L., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D. W., Glazebrook, K., Gruen, D., Gruendl, R. A., Honscheid, K., James, D. J., Jarvis, M., Kim, A. G., Kuehn, K., Kuropatkin, N., Lahav, O., Lidman, C., Lima, M., Maia, M. A. G., March, M., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., O'Neill, C. R., Ogando, R., Plazas, A. A., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Santiago, B., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Thaler, J., Thomas, D., Uddin, S., Vikram, V., Walker, A. R., Wester, W., Zhang, Y., & da Costa, L. N. redMaGiC: Selecting luminous red galaxies from the DES Science Verification data. United States. doi:10.1093/mnras/stw1281.
Rozo, E., Rykoff, E. S., Abate, A., Bonnett, C., Crocce, M., Davis, C., Hoyle, B., Leistedt, B., Peiris, H. V., Wechsler, R. H., Abbott, T., Abdalla, F. B., Banerji, M., Bauer, A. H., Benoit-Levy, A., Bernstein, G. M., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Carollo, D., Kind, M. Carrasco, Carretero, J., Castander, F. J., Childress, M. J., Cunha, C. E., D'Andrea, C. B., Davis, T., DePoy, D. L., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D. W., Glazebrook, K., Gruen, D., Gruendl, R. A., Honscheid, K., James, D. J., Jarvis, M., Kim, A. G., Kuehn, K., Kuropatkin, N., Lahav, O., Lidman, C., Lima, M., Maia, M. A. G., March, M., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., O'Neill, C. R., Ogando, R., Plazas, A. A., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Santiago, B., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Thaler, J., Thomas, D., Uddin, S., Vikram, V., Walker, A. R., Wester, W., Zhang, Y., and da Costa, L. N. Mon . "redMaGiC: Selecting luminous red galaxies from the DES Science Verification data". United States. doi:10.1093/mnras/stw1281. https://www.osti.gov/servlets/purl/1371551.
@article{osti_1371551,
title = {redMaGiC: Selecting luminous red galaxies from the DES Science Verification data},
author = {Rozo, E. and Rykoff, E. S. and Abate, A. and Bonnett, C. and Crocce, M. and Davis, C. and Hoyle, B. and Leistedt, B. and Peiris, H. V. and Wechsler, R. H. and Abbott, T. and Abdalla, F. B. and Banerji, M. and Bauer, A. H. and Benoit-Levy, A. and Bernstein, G. M. and Bertin, E. and Brooks, D. and Buckley-Geer, E. and Burke, D. L. and Capozzi, D. and Rosell, A. Carnero and Carollo, D. and Kind, M. Carrasco and Carretero, J. and Castander, F. J. and Childress, M. J. and Cunha, C. E. and D'Andrea, C. B. and Davis, T. and DePoy, D. L. and Desai, S. and Diehl, H. T. and Dietrich, J. P. and Doel, P. and Eifler, T. F. and Evrard, A. E. and Neto, A. Fausti and Flaugher, B. and Fosalba, P. and Frieman, J. and Gaztanaga, E. and Gerdes, D. W. and Glazebrook, K. and Gruen, D. and Gruendl, R. A. and Honscheid, K. and James, D. J. and Jarvis, M. and Kim, A. G. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and Lidman, C. and Lima, M. and Maia, M. A. G. and March, M. and Martini, P. and Melchior, P. and Miller, C. J. and Miquel, R. and Mohr, J. J. and Nichol, R. C. and Nord, B. and O'Neill, C. R. and Ogando, R. and Plazas, A. A. and Romer, A. K. and Roodman, A. and Sako, M. and Sanchez, E. and Santiago, B. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Thaler, J. and Thomas, D. and Uddin, S. and Vikram, V. and Walker, A. R. and Wester, W. and Zhang, Y. and da Costa, L. N.},
abstractNote = {Here, we introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ϵ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10–3 (h–1 Mpc)–3, and a median photo-z bias (zspec – zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.},
doi = {10.1093/mnras/stw1281},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 2,
volume = 461,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Seventh data Release of the Sloan Digital sky Survey
journal, May 2009

  • Abazajian, Kevork N.; Adelman-McCarthy, Jennifer K.; Agüeros, Marcel A.
  • The Astrophysical Journal Supplement Series, Vol. 182, Issue 2
  • DOI: 10.1088/0067-0049/182/2/543

A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies: Photometric redshifts for 1.5 million LRGs
journal, September 2011


The Tenth data Release of the Sloan Digital sky Survey: First Spectroscopic data from the Sdss-Iii Apache Point Observatory Galactic Evolution Experiment
journal, March 2014

  • Ahn, Christopher P.; Alexandroff, Rachael; Allende Prieto, Carlos
  • The Astrophysical Journal Supplement Series, Vol. 211, Issue 2
  • DOI: 10.1088/0067-0049/211/2/17

The Eighth data Release of the Sloan Digital sky Survey: First data from Sdss-Iii
journal, March 2011

  • Aihara, Hiroaki; Allende Prieto, Carlos; An, Deokkeun
  • The Astrophysical Journal Supplement Series, Vol. 193, Issue 2
  • DOI: 10.1088/0067-0049/193/2/29

THE SLOAN DIGITAL SKY SURVEY COADD: 275 deg 2 OF DEEP SLOAN DIGITAL SKY SURVEY IMAGING ON STRIPE 82
journal, September 2014

  • Annis, James; Soares-Santos, Marcelle; Strauss, Michael A.
  • The Astrophysical Journal, Vol. 794, Issue 2
  • DOI: 10.1088/0004-637X/794/2/120

Bayesian Photometric Redshift Estimation
journal, June 2000

  • Benitez, Narciso
  • The Astrophysical Journal, Vol. 536, Issue 2
  • DOI: 10.1086/308947

SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

K -Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared
journal, January 2007

  • Blanton, Michael R.; Roweis, Sam
  • The Astronomical Journal, Vol. 133, Issue 2
  • DOI: 10.1086/510127

Galaxy Clusters Discovered via the Sunyaev-Zel'Dovich Effect in the 2500-Square-Degree Spt-Sz Survey
journal, January 2015

  • Bleem, L. E.; Stalder, B.; de Haan, T.
  • The Astrophysical Journal Supplement Series, Vol. 216, Issue 2
  • DOI: 10.1088/0067-0049/216/2/27

Using neural networks to estimate redshift distributions. An application to CFHTLenS
journal, March 2015

  • Bonnett, Christopher
  • Monthly Notices of the Royal Astronomical Society, Vol. 449, Issue 1
  • DOI: 10.1093/mnras/stv230

High-velocity outflows from young star-forming galaxies in the UKIDSS Ultra-Deep Survey
journal, May 2013

  • Bradshaw, E. J.; Almaini, O.; Hartley, W. G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 433, Issue 1
  • DOI: 10.1093/mnras/stt715

Stellar population synthesis at the resolution of 2003
journal, October 2003


Creating Spectral Templates from Multicolor Redshift Surveys
journal, September 2000

  • Budavári, Tamás; Szalay, Alexander S.; Connolly, Andrew J.
  • The Astronomical Journal, Vol. 120, Issue 3
  • DOI: 10.1086/301514

The 10 Meter South Pole Telescope
journal, May 2011

  • Carlstrom, J. E.; Ade, P. A. R.; Aird, K. A.
  • Publications of the Astronomical Society of the Pacific, Vol. 123, Issue 903
  • DOI: 10.1086/659879

The 2dF Galaxy Redshift Survey: spectra and redshifts
journal, December 2001


ANN z : Estimating Photometric Redshifts Using Artificial Neural Networks
journal, April 2004

  • Collister, Adrian A.; Lahav, Ofer
  • Publications of the Astronomical Society of the Pacific, Vol. 116, Issue 818
  • DOI: 10.1086/383254

The Arizona CDFS Environment Survey (ACES): A Magellan/IMACS Spectroscopic Survey of the Chandra Deep Field-South: Arizona CDFS Environment Survey (ACES)
journal, August 2012


Multidimensional indexing tools for the virtual observatory
journal, October 2007

  • Csabai, I.; Dobos, L.; Trencséni, M.
  • Astronomische Nachrichten, Vol. 328, Issue 8
  • DOI: 10.1002/asna.200710817

The Baryon Oscillation Spectroscopic Survey of Sdss-Iii
journal, December 2012

  • Dawson, Kyle S.; Schlegel, David J.; Ahn, Christopher P.
  • The Astronomical Journal, Vol. 145, Issue 1
  • DOI: 10.1088/0004-6256/145/1/10

The Blanco Cosmology Survey: data Acquisition, Processing, Calibration, Quality Diagnostics, and data Release
journal, September 2012


The Dark Energy Survey Camera (DECam)
journal, January 2012


Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release: GAMA
journal, March 2011


Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample
journal, November 2001

  • Eisenstein, Daniel J.; Annis, James; Gunn, James E.
  • The Astronomical Journal, Vol. 122, Issue 5
  • DOI: 10.1086/323717

Detection of the Baryon Acoustic Peak in the Large‐Scale Correlation Function of SDSS Luminous Red Galaxies
journal, November 2005

  • Eisenstein, Daniel J.; Zehavi, Idit; Hogg, David W.
  • The Astrophysical Journal, Vol. 633, Issue 2
  • DOI: 10.1086/466512

The dark Energy Camera
journal, October 2015


The Vimos VLT deep survey: Global properties of 20 000 galaxies in the
journal, June 2008


The VIMOS Public Extragalactic Survey (VIPERS): First Data Release of 57 204 spectroscopic measurements
journal, January 2014


HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere
journal, April 2005

  • Gorski, K. M.; Hivon, E.; Banday, A. J.
  • The Astrophysical Journal, Vol. 622, Issue 2
  • DOI: 10.1086/427976

SkyNet: an efficient and robust neural network training tool for machine learning in astronomy
journal, May 2014

  • Graff, Philip; Feroz, Farhan; Hobson, Michael P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 441, Issue 2
  • DOI: 10.1093/mnras/stu642

Feature importance for machine learning redshifts applied to SDSS galaxies
journal, March 2015

  • Hoyle, B.; Rau, M. M.; Zitlau, R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 449, Issue 2
  • DOI: 10.1093/mnras/stv373

Data augmentation for machine learning redshifts applied to Sloan Digital Sky Survey galaxies
journal, April 2015

  • Hoyle, Ben; Rau, Markus Michael; Bonnett, Christopher
  • Monthly Notices of the Royal Astronomical Society, Vol. 450, Issue 1
  • DOI: 10.1093/mnras/stv599

The skewness of the aperture mass statistic
journal, July 2004


The DES Science Verification weak lensing shear catalogues
journal, May 2016

  • Jarvis, M.; Sheldon, E.; Zuntz, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 460, Issue 2
  • DOI: 10.1093/mnras/stw990

Weighing the Giants – II. Improved calibration of photometry from stellar colours and accurate photometric redshifts
journal, February 2014

  • Kelly, Patrick L.; von der Linden, Anja; Applegate, Douglas E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 439, Issue 1
  • DOI: 10.1093/mnras/stt1946

The sizes, masses and specific star formation rates of massive galaxies at 1.3 < z < 1.5: strong evidence in favour of evolution via minor mergers
journal, November 2012

  • McLure, R. J.; Pearce, H. J.; Dunlop, J. S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 428, Issue 2
  • DOI: 10.1093/mnras/sts092

A Simplex Method for Function Minimization
journal, January 1965


R[SUB]nu[/SUB]-dependent optical and near-ultraviolet extinction
journal, February 1994

  • O'Donnell, James E.
  • The Astrophysical Journal, Vol. 422
  • DOI: 10.1086/173713

Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III: Ameliorating systematic uncertainties in w(θ)
journal, September 2011


redMaPPer – IV. Photometric membership identification of red cluster galaxies with 1 per cent precision
journal, August 2015

  • Rozo, E.; Rykoff, E. S.; Becker, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 453, Issue 1
  • DOI: 10.1093/mnras/stv1560

redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG
journal, April 2014


The Redmapper Galaxy Cluster Catalog from des Science Verification data
journal, May 2016

  • Rykoff, E. S.; Rozo, E.; Hollowood, D.
  • The Astrophysical Journal Supplement Series, Vol. 224, Issue 1
  • DOI: 10.3847/0067-0049/224/1/1

Photometric redshift analysis in the Dark Energy Survey Science Verification data
journal, October 2014

  • Sánchez, C.; Carrasco Kind, M.; Lin, H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 445, Issue 2
  • DOI: 10.1093/mnras/stu1836

The Two Micron All Sky Survey (2MASS)
journal, February 2006

  • Skrutskie, M. F.; Cutri, R. M.; Stiening, R.
  • The Astronomical Journal, Vol. 131, Issue 2
  • DOI: 10.1086/498708

Sloan Digital Sky Survey: Early Data Release
journal, January 2002

  • Stoughton, Chris; Lupton, Robert H.; Bernardi, Mariangela
  • The Astronomical Journal, Vol. 123, Issue 1
  • DOI: 10.1086/324741

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: galaxy clustering measurements in the low-redshift sample of Data Release 11
journal, April 2014

  • Tojeiro, Rita; Ross, Ashley J.; Burden, Angela
  • Monthly Notices of the Royal Astronomical Society, Vol. 440, Issue 3
  • DOI: 10.1093/mnras/stu371

The Sloan Digital Sky Survey: Technical Summary
journal, September 2000

  • York, Donald G.; Adelman, J.; Anderson, Jr., John E.
  • The Astronomical Journal, Vol. 120, Issue 3
  • DOI: 10.1086/301513

OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results
journal, July 2015

  • Yuan, Fang; Lidman, C.; Davis, T. M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 452, Issue 3
  • DOI: 10.1093/mnras/stv1507

    Works referencing / citing this record:

    Unveiling galaxy bias via the halo model, KiDS, and GAMA
    journal, June 2018

    • Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad
    • Monthly Notices of the Royal Astronomical Society, Vol. 479, Issue 1
    • DOI: 10.1093/mnras/sty1502

    Producing a BOSS CMASS sample with DES imaging
    journal, September 2019

    • Lee, S.; Huff, E. M.; Ross, A. J.
    • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 2
    • DOI: 10.1093/mnras/stz2288

    Dark Energy Survey year 1 results: galaxy sample for BAO measurement
    journal, September 2018

    • Crocce, M.; Ross, A. J.; Sevilla-Noarbe, I.
    • Monthly Notices of the Royal Astronomical Society, Vol. 482, Issue 2
    • DOI: 10.1093/mnras/sty2522

    Unveiling galaxy bias via the halo model, KiDS, and GAMA
    journal, June 2018

    • Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad
    • Monthly Notices of the Royal Astronomical Society, Vol. 479, Issue 1
    • DOI: 10.1093/mnras/sty1502

    Dark Energy Survey year 1 results: galaxy sample for BAO measurement
    journal, September 2018

    • Crocce, M.; Ross, A. J.; Sevilla-Noarbe, I.
    • Monthly Notices of the Royal Astronomical Society, Vol. 482, Issue 2
    • DOI: 10.1093/mnras/sty2522

    Producing a BOSS CMASS sample with DES imaging
    journal, September 2019

    • Lee, S.; Huff, E. M.; Ross, A. J.
    • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 2
    • DOI: 10.1093/mnras/stz2288