DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solar heating of GaAs nanowire solar cells

Abstract

We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. Our findings show that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

Authors:
 [1];  [1]
  1. Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering and Center for Energy Nanoscience
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Energy Nanoscience (CEN); Univ. of Southern California, Los Angeles, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1369903
Alternate Identifier(s):
OSTI ID: 1240847
Grant/Contract Number:  
SC0001013
Resource Type:
Accepted Manuscript
Journal Name:
Optics Express
Additional Journal Information:
Journal Volume: 23; Journal Issue: 24; Related Information: CEN partners with University of Southern California (lead); University of Illinois, Urbana-Champaign; University of Michigan; University of Virginia; Journal ID: ISSN 1094-4087
Publisher:
Optical Society of America (OSA)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY; thermal emission; subwavelength structures; nanostructures; solar energy

Citation Formats

Wu, Shao-Hua, and Povinelli, Michelle L. Solar heating of GaAs nanowire solar cells. United States: N. p., 2015. Web. doi:10.1364/oe.23.0a1363.
Wu, Shao-Hua, & Povinelli, Michelle L. Solar heating of GaAs nanowire solar cells. United States. https://doi.org/10.1364/oe.23.0a1363
Wu, Shao-Hua, and Povinelli, Michelle L. Thu . "Solar heating of GaAs nanowire solar cells". United States. https://doi.org/10.1364/oe.23.0a1363. https://www.osti.gov/servlets/purl/1369903.
@article{osti_1369903,
title = {Solar heating of GaAs nanowire solar cells},
author = {Wu, Shao-Hua and Povinelli, Michelle L.},
abstractNote = {We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. Our findings show that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.},
doi = {10.1364/oe.23.0a1363},
journal = {Optics Express},
number = 24,
volume = 23,
place = {United States},
year = {Thu Sep 24 00:00:00 EDT 2015},
month = {Thu Sep 24 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Schematic illustrations of the structures of interest. (a) Square array of GaAs nanowires, embedded in optional BCB. The inset is the magnified top view of one unit cell; a is the lattice constant for the nanowire array, and d is the nanowire diameter. Note that the layer thicknessesmore » are not drawn to scale. (b) Planar GaAs structure. (c) Boundary conditions used to solve the 3D heat diffusion equation.« less

Save / Share:

Works referenced in this record:

Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics
journal, December 2011

  • Lin, Chenxi; Huang, Ningfeng; Povinelli, Michelle L.
  • Optics Express, Vol. 20, Issue S1
  • DOI: 10.1364/OE.20.00A125

Model of patterned self-assisted nanowire growth
journal, September 2014


Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption
journal, October 2010

  • Fan, Zhiyong; Kapadia, Rehan; Leu, Paul W.
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl1010788

Toward Optimized Light Utilization in Nanowire Arrays Using Scalable Nanosphere Lithography and Selected Area Growth
journal, May 2012

  • Madaria, Anuj R.; Yao, Maoqing; Chi, ChunYung
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl300341v

GaAs Nanowire Array Solar Cells with Axial p–i–n Junctions
journal, May 2014

  • Yao, Maoqing; Huang, Ningfeng; Cong, Sen
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500704r

GaAs nanopillar-array solar cells employing in situ surface passivation
journal, February 2013

  • Mariani, Giacomo; Scofield, Adam C.; Hung, Chung-Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2509

Theoretical consideration of III–V nanowire/Si triple-junction solar cells
journal, November 2012


Direct-Bandgap Epitaxial Core–Multishell Nanopillar Photovoltaics Featuring Subwavelength Optical Concentrators
journal, March 2013

  • Mariani, Giacomo; Zhou, Zhengliu; Scofield, Adam
  • Nano Letters, Vol. 13, Issue 4
  • DOI: 10.1021/nl400083g

Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS
journal, October 2005

  • Modafe, Alireza; Ghalichechian, Nima; Powers, Michael
  • Microelectronic Engineering, Vol. 82, Issue 2
  • DOI: 10.1016/j.mee.2005.07.005

Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation
journal, January 2006


Broadband absorption of semiconductor nanowire arrays for photovoltaic applications
journal, January 2012


High-efficiency calculations for three-dimensional photonic crystal cavities
journal, January 2006


Erratum: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications
journal, February 2010

  • Kelzenberg, Michael D.; Boettcher, Shannon W.; Petykiewicz, Jan A.
  • Nature Materials, Vol. 9, Issue 4, p. 368-368
  • DOI: 10.1038/nmat2727

Nanoscale thermal transport. II. 2003–2012
journal, March 2014

  • Cahill, David G.; Braun, Paul V.; Chen, Gang
  • Applied Physics Reviews, Vol. 1, Issue 1
  • DOI: 10.1063/1.4832615

Patterned Radial GaAs Nanopillar Solar Cells
journal, June 2011

  • Mariani, Giacomo; Wong, Ping-Show; Katzenmeyer, Aaron M.
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200965j

Full-scale measurements of wind-induced convective heat transfer from a roof-mounted flat plate solar collector
journal, February 1998


Nanowires With Promise for Photovoltaics
journal, July 2011

  • Borgström, Magnus T.; Wallentin, J.; Heurlin, M.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, Issue 4
  • DOI: 10.1109/JSTQE.2010.2073681

Design of Passivation Layers on Axial Junction GaAs Nanowire Solar Cells
journal, November 2014


Nanowire Solar Cells
journal, August 2011


Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications
journal, January 2009


Coaxial silicon nanowires as solar cells and nanoelectronic power sources
journal, October 2007

  • Tian, Bozhi; Zheng, Xiaolin; Kempa, Thomas J.
  • Nature, Vol. 449, Issue 7164, p. 885-889
  • DOI: 10.1038/nature06181

Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells
journal, January 2013

  • Lin, Chenxi; Martínez, Luis Javier; Povinelli, Michelle L.
  • Optics Express, Vol. 21, Issue S5
  • DOI: 10.1364/OE.21.00A872

Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications
journal, October 2007

  • Hu, Lu; Chen, Gang
  • Nano Letters, Vol. 7, Issue 11, p. 3249-3252
  • DOI: 10.1021/nl071018b

Temperature dependence of solar cell performance—an analysis
journal, June 2012


Silicon Nanowires for Photovoltaic Solar Energy Conversion
journal, October 2010


Reduced Thermal Conductivity in Nanoengineered Rough Ge and GaAs Nanowires
journal, April 2010

  • Martin, Pierre N.; Aksamija, Zlatan; Pop, Eric
  • Nano Letters, Vol. 10, Issue 4
  • DOI: 10.1021/nl902720v

Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell
journal, July 2011

  • LaPierre, R. R.
  • Journal of Applied Physics, Vol. 110, Issue 1
  • DOI: 10.1063/1.3603029

Size-dependent thermal conductivity of nanoscale semiconducting systems
journal, April 2006


Strong broadband optical absorption in silicon nanowire films
journal, July 2007

  • Tsakalakos, Loucas; Balch, Joleyn E.; Fronheiser, Jody
  • Journal of Nanophotonics, Vol. 1, Issue 1, Article No. 013552
  • DOI: 10.1117/1.2768999

Residual lattice absorption in gallium arsenide
journal, July 1977


Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films
journal, June 1981

  • Granqvist, C. G.; Hjortsberg, A.
  • Journal of Applied Physics, Vol. 52, Issue 6, p. 4205-4220
  • DOI: 10.1063/1.329270

Radiative cooling of solar cells
journal, January 2014


Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells
journal, June 2005

  • Kayes, Brendan M.; Atwater, Harry A.; Lewis, Nathan S.
  • Journal of Applied Physics, Vol. 97, Issue 11, Article No. 114302
  • DOI: 10.1063/1.1901835

Lattice Absorption in Gallium Arsenide
journal, October 1961

  • Cochran, W.; Fray, S. J.; Johnson, F. A.
  • Journal of Applied Physics, Vol. 32, Issue 10
  • DOI: 10.1063/1.1777024

Silicon Nanowire Radial p−n Junction Solar Cells
journal, June 2008

  • Garnett, Erik C.; Yang, Peidong
  • Journal of the American Chemical Society, Vol. 130, Issue 29, p. 9224-9225
  • DOI: 10.1021/ja8032907

Performance-limiting factors for GaAs-based single nanowire photovoltaics
journal, January 2014

  • Wang, Xufeng; Khan, Mohammad Ryyan; Lundstrom, Mark
  • Optics Express, Vol. 22, Issue S2
  • DOI: 10.1364/OE.22.00A344

InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit
journal, January 2013


Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics
journal, January 2011


Efficiency Enhancement of InP Nanowire Solar Cells by Surface Cleaning
journal, August 2013

  • Cui, Yingchao; Wang, Jia; Plissard, Sebastien R.
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl4016182

Nanoscale thermal transport
journal, January 2003

  • Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.
  • Journal of Applied Physics, Vol. 93, Issue 2, p. 793-818
  • DOI: 10.1063/1.1524305

Works referencing / citing this record:

Radiative sky cooling: Fundamental principles, materials, and applications
journal, June 2019

  • Zhao, Dongliang; Aili, Ablimit; Zhai, Yao
  • Applied Physics Reviews, Vol. 6, Issue 2
  • DOI: 10.1063/1.5087281

Self-adaptive radiative cooling based on phase change materials
journal, January 2018


GaAs Nanowires Grown by Catalyst Epitaxy for High Performance Photovoltaics
journal, August 2018


GaAs Nanowires Grown by Catalyst Epitaxy for High Performance Photovoltaics
journal, August 2018


Radiative cooling by tailoring surfaces with microstructures
preprint, January 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.