DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides

Abstract

Two synthetic strategies for incorporating diiron analogues of [FeFe]-hydrogenases into short peptides via phosphine functional groups are described in this paper. First, utilizing the amine side chain of lysine as an anchor, phosphine carboxylic acids can be coupled via amide formation to resin-bound peptides. Second, artificial, phosphine-containing amino acids can be directly incorporated into peptides via solution phase peptide synthesis. The second approach is demonstrated using three amino acids each with a different phosphine substituent (diphenyl, diisopropyl, and diethyl phosphine). In total, five distinct monophosphine-substituted, diiron model complexes were prepared by reaction of the phosphine-peptides with diiron hexacarbonyl precursors, either (μ-pdt)Fe2(CO)6 or (μ-bdt)Fe2(CO)6 (pdt = propane-1,3-dithiolate, bdt = benzene-1,2-dithiolate). Formation of the complexes was confirmed by UV/Vis, FTIR and 31P NMR spectroscopy. Electrocatalysis by these complexes is reported in the presence of acetic acid in mixed aqueous-organic solutions. Addition of water results in enhancement of the catalytic rates.

Authors:
 [1];  [1];  [1];  [1]
  1. Arizona State Univ., Tempe, AZ (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Solar Fuel Production (BISfuel)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1369647
Grant/Contract Number:  
SC0001016
Resource Type:
Accepted Manuscript
Journal Name:
Dalton Transactions
Additional Journal Information:
Journal Volume: 44; Journal Issue: 33; Related Information: BISfuel partners with Arizona State University.; Journal ID: ISSN 1477-9226
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Roy, Souvik, Nguyen, Thuy-Ai D., Gan, Lu, and Jones, Anne K. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides. United States: N. p., 2015. Web. doi:10.1039/c5dt01796c.
Roy, Souvik, Nguyen, Thuy-Ai D., Gan, Lu, & Jones, Anne K. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides. United States. https://doi.org/10.1039/c5dt01796c
Roy, Souvik, Nguyen, Thuy-Ai D., Gan, Lu, and Jones, Anne K. Thu . "Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides". United States. https://doi.org/10.1039/c5dt01796c. https://www.osti.gov/servlets/purl/1369647.
@article{osti_1369647,
title = {Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides},
author = {Roy, Souvik and Nguyen, Thuy-Ai D. and Gan, Lu and Jones, Anne K.},
abstractNote = {Two synthetic strategies for incorporating diiron analogues of [FeFe]-hydrogenases into short peptides via phosphine functional groups are described in this paper. First, utilizing the amine side chain of lysine as an anchor, phosphine carboxylic acids can be coupled via amide formation to resin-bound peptides. Second, artificial, phosphine-containing amino acids can be directly incorporated into peptides via solution phase peptide synthesis. The second approach is demonstrated using three amino acids each with a different phosphine substituent (diphenyl, diisopropyl, and diethyl phosphine). In total, five distinct monophosphine-substituted, diiron model complexes were prepared by reaction of the phosphine-peptides with diiron hexacarbonyl precursors, either (μ-pdt)Fe2(CO)6 or (μ-bdt)Fe2(CO)6 (pdt = propane-1,3-dithiolate, bdt = benzene-1,2-dithiolate). Formation of the complexes was confirmed by UV/Vis, FTIR and 31P NMR spectroscopy. Electrocatalysis by these complexes is reported in the presence of acetic acid in mixed aqueous-organic solutions. Addition of water results in enhancement of the catalytic rates.},
doi = {10.1039/c5dt01796c},
journal = {Dalton Transactions},
number = 33,
volume = 44,
place = {United States},
year = {Thu Jul 23 00:00:00 EDT 2015},
month = {Thu Jul 23 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Synthesis of phosphine containing amino acids: Utilization of peptide synthesis in ligand design
journal, January 2006

  • Agarkov, Anton; Greenfield, Scott; Xie, Dejian
  • Biopolymers, Vol. 84, Issue 1
  • DOI: 10.1002/bip.20395

Synthetic Hydrogenases:  Incorporation of an Iron Carbonyl Thiolate into a Designed Peptide
journal, December 2007

  • Jones, Anne K.; Lichtenstein, Bruce R.; Dutta, Arnab
  • Journal of the American Chemical Society, Vol. 129, Issue 48
  • DOI: 10.1021/ja075116a

Readily available amino acid building blocks for the synthesis of phosphole-containing peptides
journal, April 2007


Biomimetic assembly and activation of [FeFe]-hydrogenases
journal, June 2013

  • Berggren, G.; Adamska, A.; Lambertz, C.
  • Nature, Vol. 499, Issue 7456
  • DOI: 10.1038/nature12239

Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic
journal, January 2012

  • Roy, Anindya; Madden, Christopher; Ghirlanda, Giovanna
  • Chemical Communications, Vol. 48, Issue 79
  • DOI: 10.1039/c2cc34470j

Reaction of Fe3(CO)12 with octreotide—chemical, electrochemical and biological investigations
journal, January 2010

  • Apfel, Ulf-Peter; Rudolph, Manfred; Apfel, Christina
  • Dalton Transactions, Vol. 39, Issue 12
  • DOI: 10.1039/b921299j

Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships
journal, January 2003

  • Chong, Daesung; Georgakaki, Irene P.; Mejia-Rodriguez, Rosario
  • Dalton Trans., Issue 21
  • DOI: 10.1039/B304283A

[Ni(P Ph 2 N C6H4X 2 ) 2 ] 2+ Complexes as Electrocatalysts for H 2 Production: Effect of Substituents, Acids, and Water on Catalytic Rates
journal, April 2011

  • Kilgore, Uriah J.; Roberts, John A. S.; Pool, Douglas H.
  • Journal of the American Chemical Society, Vol. 133, Issue 15
  • DOI: 10.1021/ja109755f

Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts
journal, January 2015

  • Ho, Ming-Hsun; O'Hagan, Molly; Dupuis, Michel
  • Dalton Transactions, Vol. 44, Issue 24
  • DOI: 10.1039/C5DT00782H

An artificial di-iron oxo-protein with phenol oxidase activity
journal, November 2009

  • Faiella, Marina; Andreozzi, Concetta; de Rosales, Rafael Torres Martin
  • Nature Chemical Biology, Vol. 5, Issue 12
  • DOI: 10.1038/nchembio.257

BIOCHEMISTRY:Biological Hydrogen Production: Not So Elementary
journal, December 1998


A Nickel Superoxide Dismutase Maquette That Reproduces the Spectroscopic and Functional Properties of the Metalloenzyme
journal, March 2006

  • Shearer, Jason; Long, Linh M.
  • Inorganic Chemistry, Vol. 45, Issue 6
  • DOI: 10.1021/ic0514344

Production of H2 at fast rates using a nickel electrocatalyst in water–acetonitrile solutions
journal, January 2013

  • Hoffert, Wesley A.; Roberts, John A. S.; Morris Bullock, R.
  • Chemical Communications, Vol. 49, Issue 71
  • DOI: 10.1039/c3cc43203c

Incorporating Peptides in the Outer-Coordination Sphere of Bioinspired Electrocatalysts for Hydrogen Production
journal, May 2011

  • Jain, Avijita; Lense, Sheri; Linehan, John C.
  • Inorganic Chemistry, Vol. 50, Issue 9
  • DOI: 10.1021/ic1025872

Electrochemical and theoretical investigations of the reduction of [Fe2(CO)5L{µ-SCH2XCH2S}] complexes related to [FeFe] hydrogenase
journal, January 2007

  • Capon, Jean-François; Ezzaher, Salah; Gloaguen, Frédéric
  • New Journal of Chemistry, Vol. 31, Issue 12
  • DOI: 10.1039/b709273c

Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate
journal, September 2001

  • Gloaguen, Frédéric; Lawrence, Joshua D.; Rauchfuss, Thomas B.
  • Journal of the American Chemical Society, Vol. 123, Issue 38
  • DOI: 10.1021/ja016516f

Beyond the Active Site: The Impact of the Outer Coordination Sphere on Electrocatalysts for Hydrogen Production and Oxidation
journal, June 2014

  • Ginovska-Pangovska, Bojana; Dutta, Arnab; Reback, Matthew L.
  • Accounts of Chemical Research, Vol. 47, Issue 8
  • DOI: 10.1021/ar5001742

Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase
journal, November 1999


Artificial [FeFe]-Hydrogenase: On Resin Modification of an Amino Acid to Anchor a Hexacarbonyldiiron Cluster in a Peptide Framework
journal, November 2010

  • Roy, Souvik; Shinde, Sandip; Hamilton, G. Alexander
  • European Journal of Inorganic Chemistry, Vol. 2011, Issue 7
  • DOI: 10.1002/ejic.201000979

High Asymmetric Induction with β-Turn-Derived Palladium Phosphine Complexes
journal, August 2003

  • Greenfield, Scott J.; Agarkov, Anton; Gilbertson, Scott R.
  • Organic Letters, Vol. 5, Issue 17
  • DOI: 10.1021/ol035097j

The Cyanide Ligands of [FeFe] Hydrogenase: Pulse EPR Studies of 13 C and 15 N-Labeled H-Cluster
journal, August 2014

  • Myers, William K.; Stich, Troy A.; Suess, Daniel L. M.
  • Journal of the American Chemical Society, Vol. 136, Issue 35
  • DOI: 10.1021/ja507046w

Electrochemical proton reduction at mild potentials by monosubstituted diiron organometallic complexes bearing a benzenedithiolate bridge
journal, May 2007

  • Gloaguen, Frederic; Morvan, Didier; Capon, Jean-François
  • Journal of Electroanalytical Chemistry, Vol. 603, Issue 1
  • DOI: 10.1016/j.jelechem.2007.02.003

Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic
journal, August 2013

  • Esselborn, Julian; Lambertz, Camilla; Adamska-Venkatesh, Agnieszka
  • Nature Chemical Biology, Vol. 9, Issue 10
  • DOI: 10.1038/nchembio.1311

The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H 2 Production Electrocatalysts:  Iron Hydrogenase Model Complexes
journal, September 2004

  • Mejia-Rodriguez, Rosario; Chong, Daesung; Reibenspies, Joseph H.
  • Journal of the American Chemical Society, Vol. 126, Issue 38
  • DOI: 10.1021/ja039394v

Chemistry and the hydrogenases
journal, January 2003

  • Evans, David J.; Pickett, Christopher J.
  • Chemical Society Reviews, Vol. 32, Issue 5
  • DOI: 10.1039/b201317g

Designing artificial enzymes by intuition and computation
journal, December 2009

  • Nanda, Vikas; Koder, Ronald L.
  • Nature Chemistry, Vol. 2, Issue 1
  • DOI: 10.1038/nchem.473

Electrocatalytic H 2 production with a turnover frequency >10 7 s −1 : the medium provides an increase in rate but not overpotential
journal, January 2014

  • Hou, Jianbo; Fang, Ming; Cardenas, Allan Jay P.
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE01899K

Hydrogenases: Hydrogen-Activating Enzymes
journal, March 2002


Enzymes activated by synthetic components
journal, June 2013

  • Bethel, Ryan D.; Darensbourg, Marcetta Y.
  • Nature, Vol. 499, Issue 7456
  • DOI: 10.1038/nature12260

Versatile Building Block for the Synthesis of Phosphine-Containing Peptides: The Sulfide of Diphenylphosphinoserine
journal, May 1994

  • Gilbertson, Scott R.; Chen, Guohua; McLoughlin, Margaret
  • Journal of the American Chemical Society, Vol. 116, Issue 10
  • DOI: 10.1021/ja00089a049

Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake
journal, April 2015


Mimicking hydrogenases: From biomimetics to artificial enzymes
journal, July 2014

  • Simmons, Trevor R.; Berggren, Gustav; Bacchi, Marine
  • Coordination Chemistry Reviews, Vol. 270-271
  • DOI: 10.1016/j.ccr.2013.12.018

H 2 Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation
journal, November 2010

  • Fourmond, Vincent; Jacques, Pierre-André; Fontecave, Marc
  • Inorganic Chemistry, Vol. 49, Issue 22
  • DOI: 10.1021/ic101187v

Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases
journal, May 2009

  • Capon, Jean-François; Gloaguen, Frédéric; Pétillon, François Y.
  • Coordination Chemistry Reviews, Vol. 253, Issue 9-10
  • DOI: 10.1016/j.ccr.2008.10.020

Cutting out the middleman
journal, August 2013


A Simple Synthesis and Some Synthetic Applications of Substituted Phosphide and Phosphinite Anions
journal, January 1986

  • Tsvetkov, E. N.; Bondarenko, N. A.; Malakhova, I. G.
  • Synthesis, Vol. 1986, Issue 03
  • DOI: 10.1055/s-1986-31510

A Ferrocene-Peptide Conjugate as a Hydrogenase Model System
journal, October 2008

  • de Hatten, Xavier; Bothe, Eberhardt; Merz, Klaus
  • European Journal of Inorganic Chemistry, Vol. 2008, Issue 29
  • DOI: 10.1002/ejic.200800566

Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases
journal, October 2007

  • Fontecilla-Camps, Juan C.; Volbeda, Anne; Cavazza, Christine
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr050195z

Protein Design: Toward Functional Metalloenzymes
journal, January 2014

  • Yu, Fangting; Cangelosi, Virginia M.; Zastrow, Melissa L.
  • Chemical Reviews, Vol. 114, Issue 7
  • DOI: 10.1021/cr400458x

Asymmetric Catalysis with Libraries of Palladium β-Turn Phosphine Complexes
journal, July 2000

  • Gilbertson, Scott R.; Collibee, Scott E.; Agarkov, Anton
  • Journal of the American Chemical Society, Vol. 122, Issue 27
  • DOI: 10.1021/ja992306f

Diiron Benzenedithiolate Complexes Relevant to the [FeFe] Hydrogenase Active Site: Complexes Relevant to the [FeFe] Hydrogenase Active Site
journal, May 2015

  • Pandey, Indresh Kumar; Mobin, Shaikh M.; Deibel, Naina
  • European Journal of Inorganic Chemistry, Vol. 2015, Issue 17
  • DOI: 10.1002/ejic.201500345

Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center
journal, January 1999


Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases
journal, June 2009

  • Tard, Cédric; Pickett, Christopher J.
  • Chemical Reviews, Vol. 109, Issue 6
  • DOI: 10.1021/cr800542q

De novo protein components for oxidoreductase assembly and biological integration
journal, April 2014

  • Watkins, Daniel W.; Armstrong, Craig T.; Anderson, JL Ross
  • Current Opinion in Chemical Biology, Vol. 19
  • DOI: 10.1016/j.cbpa.2014.01.016

High Asymmetric Induction with β-Turn-Derived Palladium Phosphine Complexes.
journal, December 2003

  • Greenfield, Scott J.; Agarkov, Anton; Gilbertson, Scott R.
  • ChemInform, Vol. 34, Issue 51
  • DOI: 10.1002/chin.200351026

'Cutting out the Middleman'
journal, October 1928

  • Desperandum, Nil; Cooke, Clifton
  • The Musical Times, Vol. 69, Issue 1028
  • DOI: 10.2307/915797

Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases
journal, December 2007

  • Fontecilla-Camps, Juan C.; Volbeda, Anne; Cavazza, Christine
  • ChemInform, Vol. 38, Issue 50
  • DOI: 10.1002/chin.200750260

Readily Available Amino Acid Building Blocks for the Synthesis of Phosphole-Containing Peptides.
journal, July 2007

  • van Zutphen, Steven; Margarit, Vicente J.; Mora, Guilhem
  • ChemInform, Vol. 38, Issue 31
  • DOI: 10.1002/chin.200731153

Cutting Out The Middleman?
book, October 2017

  • Rabuzzi, Daniel A.
  • Merchant Organization and Maritime Trade in the North Atlantic, 1660-1815
  • DOI: 10.2307/j.ctt21pxjv1.12

Chemistry and the Hydrogenases
journal, December 2003


Works referencing / citing this record:

Catalytic Metallopolymers from [2Fe‐2S] Clusters: Artificial Metalloenzymes for Hydrogen Production
journal, March 2019

  • Karayilan, Metin; Brezinski, William P.; Clary, Kayla E.
  • Angewandte Chemie, Vol. 131, Issue 23
  • DOI: 10.1002/ange.201813776

Catalytic Metallopolymers from [2Fe‐2S] Clusters: Artificial Metalloenzymes for Hydrogen Production
journal, June 2019

  • Karayilan, Metin; Brezinski, William P.; Clary, Kayla E.
  • Angewandte Chemie International Edition, Vol. 58, Issue 23
  • DOI: 10.1002/anie.201813776

Hydrophilic Quaternary Ammonium-Group-Containing [FeFe]-Hydrogenase Models: Synthesis, Structures, and Electrocatalytic Hydrogen Production
journal, September 2016

  • Song, Li-Cheng; Wang, Yong-Xiang; Xing, Xu-Kang
  • Chemistry - A European Journal, Vol. 22, Issue 45
  • DOI: 10.1002/chem.201603040

The plasticity of redox cofactors: from metalloenzymes to redox-active DNA
journal, August 2018


Synthesis and interconversions of reduced, alkali–metal supported iron–sulfur–carbonyl complexes
journal, January 2017

  • Shupp, J. Patrick; Rose, Amber R.; Rose, Michael J.
  • Dalton Transactions, Vol. 46, Issue 28
  • DOI: 10.1039/c7dt01506b

Synthesis of a miniaturized [FeFe] hydrogenase model system
journal, January 2019

  • Esmieu, Charlène; Guo, Meiyuan; Redman, Holly J.
  • Dalton Transactions, Vol. 48, Issue 7
  • DOI: 10.1039/c8dt05085f

A bioinspired thiolate-bridged dinickel complex with a pendant amine: synthesis, structure and electrocatalytic properties
journal, January 2020

  • Sun, Puhua; Yang, Dawei; Li, Ying
  • Dalton Transactions, Vol. 49, Issue 7
  • DOI: 10.1039/c9dt04493k

Synthesis of a miniaturized [FeFe] hydrogenase model system
journal, January 2019

  • Esmieu, Charlène; Guo, Meiyuan; Redman, Holly J.
  • Dalton Transactions, Vol. 48, Issue 7
  • DOI: 10.1039/c8dt05085f