skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Method for computationally efficient design of dielectric laser accelerator structures

Abstract

Here, dielectric microstructures have generated much interest in recent years as a means of accelerating charged particles when powered by solid state lasers. The acceleration gradient (or particle energy gain per unit length) is an important figure of merit. To design structures with high acceleration gradients, we explore the adjoint variable method, a highly efficient technique used to compute the sensitivity of an objective with respect to a large number of parameters. With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with respect to its entire spatial permittivity distribution is calculated by the use of only two full-field electromagnetic simulations, the original and ‘adjoint’. The adjoint simulation corresponds physically to the reciprocal situation of a point charge moving through the accelerator gap and radiating. Using this formalism, we perform numerical optimizations aimed at maximizing acceleration gradients, which generate fabricable structures of greatly improved performance in comparison to previously examined geometries.

Authors:
 [1];  [2];  [3];  [3];  [1]
  1. Stanford Univ., Stanford, CA (United States)
  2. Louisiana State Univ., Baton Rouge, LA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1369313
Grant/Contract Number:  
GBMF4744; 1254934; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Optics Express
Additional Journal Information:
Journal Volume: 25; Journal Issue: 13; Journal ID: ISSN 1094-4087
Publisher:
Optical Society of America (OSA)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; optical devices; gratings; subwavelength structures

Citation Formats

Hughes, Tyler, Veronis, Georgios, Wootton, Kent P., England, R. Joel, and Fan, Shanhui. Method for computationally efficient design of dielectric laser accelerator structures. United States: N. p., 2017. Web. doi:10.1364/OE.25.015414.
Hughes, Tyler, Veronis, Georgios, Wootton, Kent P., England, R. Joel, & Fan, Shanhui. Method for computationally efficient design of dielectric laser accelerator structures. United States. doi:10.1364/OE.25.015414.
Hughes, Tyler, Veronis, Georgios, Wootton, Kent P., England, R. Joel, and Fan, Shanhui. Thu . "Method for computationally efficient design of dielectric laser accelerator structures". United States. doi:10.1364/OE.25.015414. https://www.osti.gov/servlets/purl/1369313.
@article{osti_1369313,
title = {Method for computationally efficient design of dielectric laser accelerator structures},
author = {Hughes, Tyler and Veronis, Georgios and Wootton, Kent P. and England, R. Joel and Fan, Shanhui},
abstractNote = {Here, dielectric microstructures have generated much interest in recent years as a means of accelerating charged particles when powered by solid state lasers. The acceleration gradient (or particle energy gain per unit length) is an important figure of merit. To design structures with high acceleration gradients, we explore the adjoint variable method, a highly efficient technique used to compute the sensitivity of an objective with respect to a large number of parameters. With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with respect to its entire spatial permittivity distribution is calculated by the use of only two full-field electromagnetic simulations, the original and ‘adjoint’. The adjoint simulation corresponds physically to the reciprocal situation of a point charge moving through the accelerator gap and radiating. Using this formalism, we perform numerical optimizations aimed at maximizing acceleration gradients, which generate fabricable structures of greatly improved performance in comparison to previously examined geometries.},
doi = {10.1364/OE.25.015414},
journal = {Optics Express},
number = 13,
volume = 25,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Dielectric laser accelerators
journal, December 2014


Proposed few-optical cycle laser-driven particle accelerator structure
journal, November 2006

  • Plettner, T.; Lu, P. P.; Byer, R. L.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 9, Issue 11
  • DOI: 10.1103/PhysRevSTAB.9.111301

Demonstration of electron acceleration in a laser-driven dielectric microstructure
journal, November 2013

  • Peralta, E. A.; Soong, K.; England, R. J.
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12664

Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures
journal, January 2015

  • Leedle, Kenneth J.; Ceballos, Andrew; Deng, Huiyang
  • Optics Letters, Vol. 40, Issue 18
  • DOI: 10.1364/OL.40.004344

Silicon buried gratings for dielectric laser electron accelerators
journal, May 2014

  • Chang, Chia-Ming; Solgaard, Olav
  • Applied Physics Letters, Vol. 104, Issue 18
  • DOI: 10.1063/1.4875957

Dielectric laser acceleration of electrons in the vicinity of single and double grating structures—theory and simulations
journal, November 2014

  • Breuer, John; McNeur, Joshua; Hommelhoff, Peter
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 47, Issue 23
  • DOI: 10.1088/0953-4075/47/23/234004

Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: Experimental part
journal, February 2014

  • Breuer, John; Graf, Roswitha; Apolonski, Alexander
  • Physical Review Special Topics - Accelerators and Beams, Vol. 17, Issue 2
  • DOI: 10.1103/PhysRevSTAB.17.021301

Acceleration theorems
conference, January 1995

  • Palmer, R. B.
  • The sixth advanced accelerator concepts workshop, AIP Conference Proceedings
  • DOI: 10.1063/1.48253

Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power
journal, January 2008

  • Dawson, Jay W.; Messerly, Michael J.; Beach, Raymond J.
  • Optics Express, Vol. 16, Issue 17
  • DOI: 10.1364/OE.16.013240

Microstructure-based laser-driven free-electron laser
journal, August 2008

  • Plettner, T.; Byer, R. L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 593, Issue 1-2
  • DOI: 10.1016/j.nima.2008.04.063

Derivation of the pulse front tilt caused by angular dispersion
journal, December 1996


Pulse-front tilt caused by spatial and temporal chirp
journal, January 2004


Feasible adjoint sensitivity technique for EM design optimization
journal, December 2002

  • Georgieva, N. K.; Glavic, S.; Bakr, M. H.
  • IEEE Transactions on Microwave Theory and Techniques, Vol. 50, Issue 12
  • DOI: 10.1109/TMTT.2002.805131

An adjoint variable method for frequency domain TLM problems with conducting boundaries
journal, September 2003

  • Bakr, M. H.; Nikolova, N. K.
  • IEEE Microwave and Wireless Components Letters, Vol. 13, Issue 9
  • DOI: 10.1109/LMWC.2003.811665

A review of the adjoint-state method for computing the gradient of a functional with geophysical applications
journal, November 2006


Method for sensitivity analysis of photonic crystal devices
journal, January 2004

  • Veronis, Georgios; Dutton, Robert W.; Fan, Shanhui
  • Optics Letters, Vol. 29, Issue 19
  • DOI: 10.1364/OL.29.002288

Adjoint shape optimization applied to electromagnetic design
journal, January 2013

  • Lalau-Keraly, Christopher M.; Bhargava, Samarth; Miller, Owen D.
  • Optics Express, Vol. 21, Issue 18
  • DOI: 10.1364/OE.21.021693

Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer
journal, May 2015

  • Piggott, Alexander Y.; Lu, Jesse; Lagoudakis, Konstantinos G.
  • Nature Photonics, Vol. 9, Issue 6, p. 374-377
  • DOI: 10.1038/nphoton.2015.69

High Energy Gain of Trapped Electrons in a Tapered, Diffraction-Dominated Inverse-Free-Electron Laser
journal, April 2005


High-energy inverse free-electron laser accelerator
conference, January 1985

  • Courant, E. D.; Pellegrini, C.; Zakowicz, W.
  • AIP Conference Proceedings Volume 127
  • DOI: 10.1063/1.35181

Laser Acceleration of Relativistic Electrons Using the Inverse Cherenkov Effect
journal, January 1995


A high‐energy, laser accelerator for electrons using the inverse Cherenkov effect
journal, August 1983

  • Fontana, J. R.; Pantell, R. H.
  • Journal of Applied Physics, Vol. 54, Issue 8
  • DOI: 10.1063/1.332684

Experimental verification of the theory on the inverse Smith–Purcell effect at a submillimeter wavelength
journal, August 1992

  • Bae, J.; Shirai, H.; Nishida, T.
  • Applied Physics Letters, Vol. 61, Issue 7
  • DOI: 10.1063/1.107773

Experimental evidence of the inverse Smith–Purcell effect
journal, July 1987

  • Mizuno, K.; Pae, J.; Nozokido, T.
  • Nature, Vol. 328, Issue 6125
  • DOI: 10.1038/328045a0

Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers
journal, April 2012


Updating quasi-Newton matrices with limited storage
journal, September 1980


Three-dimensional dielectric photonic crystal structures for laser-driven acceleration
journal, January 2008


Stimulated dielectric wake-field accelerator
journal, October 1997