skip to main content

DOE PAGESDOE PAGES

Title: Three-dimensional nature of the band structure of ZrTe 5 measured by high-momentum-resolution photoemission spectroscopy [3D nature ZrTe 5 band structure measured by high-momentum-resolution photoemission spectroscopy]

Here, we have performed a systematic high-momentum-resolution photoemission study on ZrTe 5 using 6-eV photon energy. We have measured the band structure near the Γ point, and quantified the gap between the conduction and valence band as 18 ≤ Δ ≤ 29 meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the three-dimensional (3D) nature of the material's band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe 5 is not a 3D strong topological insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe 5 being a 3D weak topological insulator.
Authors:
 [1] ;  [2] ;  [1] ;  [3] ;  [1] ;  [4] ;  [4] ;  [4] ;  [3] ;  [3] ;  [3] ;  [4] ;  [1]
  1. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Nanjing Univ., Jiangsu (China)
Publication Date:
Grant/Contract Number:
AC02-76SF00515; GBMF4546; 51472112; BK20140019
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 19; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1368695
Alternate Identifier(s):
OSTI ID: 1356444