DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tunable thermal expansion in framework materials through redox intercalation

Abstract

Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.

Authors:
 [1];  [1];  [2];  [3];  [4];  [2];  [5]; ORCiD logo [5];  [6];  [1];  [1];  [7];  [3];  [6];  [3];  [1]; ORCiD logo [8];  [1]
  1. Univ. of Science and Technology Beijing, Beijing (China)
  2. Univ. of Padova, Padova (Italy)
  3. Chinese Academy of Sciences (CAS), Beijing (China)
  4. National Institute of Standards and Technology, Gaithersburg, MD (United States)
  5. Elettra Sicrotrone Trieste, Basovizza (Italy)
  6. Beihang Univ., Beijing (China)
  7. Argonne National Lab. (ANL), Argonne, IL (United States)
  8. Univ. of Edinburgh, Edinburgh (United Kingdom)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NSFC); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22), Scientific User Facilities Division
OSTI Identifier:
1367161
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; materials chemistry; solid-state chemistry

Citation Formats

Chen, Jun, Gao, Qilong, Sanson, Andrea, Jiang, Xingxing, Huang, Qingzhen, Carnera, Alberto, Rodriguez, Clara Guglieri, Olivi, Luca, Wang, Lei, Hu, Lei, Lin, Kun, Ren, Yang, Lin, Zheshuai, Wang, Cong, Gu, Lin, Deng, Jinxia, Attfield, J. Paul, and Xing, Xianran. Tunable thermal expansion in framework materials through redox intercalation. United States: N. p., 2017. Web. doi:10.1038/ncomms14441.
Chen, Jun, Gao, Qilong, Sanson, Andrea, Jiang, Xingxing, Huang, Qingzhen, Carnera, Alberto, Rodriguez, Clara Guglieri, Olivi, Luca, Wang, Lei, Hu, Lei, Lin, Kun, Ren, Yang, Lin, Zheshuai, Wang, Cong, Gu, Lin, Deng, Jinxia, Attfield, J. Paul, & Xing, Xianran. Tunable thermal expansion in framework materials through redox intercalation. United States. https://doi.org/10.1038/ncomms14441
Chen, Jun, Gao, Qilong, Sanson, Andrea, Jiang, Xingxing, Huang, Qingzhen, Carnera, Alberto, Rodriguez, Clara Guglieri, Olivi, Luca, Wang, Lei, Hu, Lei, Lin, Kun, Ren, Yang, Lin, Zheshuai, Wang, Cong, Gu, Lin, Deng, Jinxia, Attfield, J. Paul, and Xing, Xianran. Thu . "Tunable thermal expansion in framework materials through redox intercalation". United States. https://doi.org/10.1038/ncomms14441. https://www.osti.gov/servlets/purl/1367161.
@article{osti_1367161,
title = {Tunable thermal expansion in framework materials through redox intercalation},
author = {Chen, Jun and Gao, Qilong and Sanson, Andrea and Jiang, Xingxing and Huang, Qingzhen and Carnera, Alberto and Rodriguez, Clara Guglieri and Olivi, Luca and Wang, Lei and Hu, Lei and Lin, Kun and Ren, Yang and Lin, Zheshuai and Wang, Cong and Gu, Lin and Deng, Jinxia and Attfield, J. Paul and Xing, Xianran},
abstractNote = {Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.},
doi = {10.1038/ncomms14441},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {Thu Feb 09 00:00:00 EST 2017},
month = {Thu Feb 09 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 89 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

The Distortion‐Adjusted Change of Thermal Expansion Behavior of Cubic Magnetic Semiconductor (Sc 1− x M x )F 3 (M = Al, Fe)
journal, July 2016

  • Han, Fei; Chen, Jun; Hu, Lei
  • Journal of the American Ceramic Society, Vol. 99, Issue 9
  • DOI: 10.1111/jace.14399

Large Negative Thermal Expansion and Anomalous Behavior on Compression in Cubic ReO 3 -Type A II B IV F 6 : CaZrF 6 and CaHfF 6
journal, May 2015


Core–shell strain structure of zeolite microcrystals
journal, July 2013

  • Cha, Wonsuk; Jeong, Nak Cheon; Song, Sanghoon
  • Nature Materials, Vol. 12, Issue 8
  • DOI: 10.1038/nmat3698

Relaxation of Crystals with the Quasi-Newton Method
journal, February 1997

  • Pfrommer, Bernd G.; Côté, Michel; Louie, Steven G.
  • Journal of Computational Physics, Vol. 131, Issue 1
  • DOI: 10.1006/jcph.1996.5612

Tunable Anisotropic Thermal Expansion of a Porous Zinc(II) Metal–Organic Framework
journal, April 2013

  • Grobler, Ilne; Smith, Vincent J.; Bhatt, Prashant M.
  • Journal of the American Chemical Society, Vol. 135, Issue 17
  • DOI: 10.1021/ja401671p

A fresh twist on shrinking materials
journal, December 2011


Negative Thermal Expansion in LnCo(CN) 6 (Ln=La, Pr, Sm, Ho, Lu, Y): Mechanisms and Compositional Trends
journal, April 2013

  • Duyker, Samuel G.; Peterson, Vanessa K.; Kearley, Gordon J.
  • Angewandte Chemie International Edition, Vol. 52, Issue 20
  • DOI: 10.1002/anie.201300619

Recent advances in magnetic structure determination by neutron powder diffraction
journal, October 1993


The widespread occurrence of negative thermal expansion in zeolites
journal, January 2001

  • Lightfoot, Philip; Woodcock, David A.; Maple, Martin J.
  • Journal of Materials Chemistry, Vol. 11, Issue 1
  • DOI: 10.1039/b002950p

Further Contraction of ZrW2O8
journal, October 1999

  • Duan, N.; Kameswari, U.; Sleight, A. W.
  • Journal of the American Chemical Society, Vol. 121, Issue 44
  • DOI: 10.1021/ja992569+

Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]
journal, February 2008


Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8
journal, April 1996


Exceptional Negative Thermal Expansion in Isoreticular Metal–Organic Frameworks
journal, June 2007

  • Dubbeldam, David; Walton, Krista S.; Ellis, Donald E.
  • Angewandte Chemie, Vol. 119, Issue 24
  • DOI: 10.1002/ange.200700218

Synthesis and physical properties of negative thermal expansion materials Zr1−xMxW2O8−y (M=Sc, In, Y) substituted for Zr(IV) sites by M(III) ions
journal, October 2003


Compositional Dependence of Negative Thermal Expansion in the Prussian Blue Analogues M II Pt IV (CN) 6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd)
journal, May 2006

  • Chapman, Karena W.; Chupas, Peter J.; Kepert, Cameron J.
  • Journal of the American Chemical Society, Vol. 128, Issue 21
  • DOI: 10.1021/ja060916r

Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF 3
journal, November 2010

  • Greve, Benjamin K.; Martin, Kenneth L.; Lee, Peter L.
  • Journal of the American Chemical Society, Vol. 132, Issue 44
  • DOI: 10.1021/ja106711v

Zero Thermal Expansion in PbTiO 3 -Based Perovskites
journal, January 2008

  • Chen, Jun; Xing, Xianran; Sun, Ce
  • Journal of the American Chemical Society, Vol. 130, Issue 4
  • DOI: 10.1021/ja7100278

Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous framework
journal, September 2013

  • Zhou, Hao-Long; Lin, Rui-Biao; He, Chun-Ting
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3534

Zero Thermal Expansion and Ferromagnetism in Cubic Sc 1– x M x F 3 (M = Ga, Fe) over a Wide Temperature Range
journal, September 2014

  • Hu, Lei; Chen, Jun; Fan, Longlong
  • Journal of the American Chemical Society, Vol. 136, Issue 39
  • DOI: 10.1021/ja5077487

A century of zero expansion
journal, July 1999


Chemical Control of Thermal Expansion in Cation-Exchanged Zeolite A
journal, February 2014

  • Carey, Thomas; Tang, Chiu C.; Hriljac, Joseph A.
  • Chemistry of Materials, Vol. 26, Issue 4
  • DOI: 10.1021/cm403312q

Symmetry Switching of Negative Thermal Expansion by Chemical Control
journal, March 2016

  • Senn, Mark S.; Murray, Claire A.; Luo, Xuan
  • Journal of the American Chemical Society, Vol. 138, Issue 17
  • DOI: 10.1021/jacs.5b13192

Guest-Dependent Negative Thermal Expansion in Nanoporous Prussian Blue Analogues M II Pt IV (CN) 6 · x {H 2 O} (0 ≤ x ≤ 2; M = Zn, Cd)
journal, December 2005

  • Goodwin, Andrew L.; Chapman, Karena W.; Kepert, Cameron J.
  • Journal of the American Chemical Society, Vol. 127, Issue 51
  • DOI: 10.1021/ja056460f

Giant Negative Thermal Expansion in NaZn 13 -Type La(Fe, Si, Co) 13 Compounds
journal, July 2013

  • Huang, Rongjin; Liu, Yanying; Fan, Wei
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja405161z

A systematic study of Nasicon-type Li1+xMxTi2−x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy
journal, November 2014


Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer
journal, June 2011

  • Azuma, Masaki; Chen, Wei-tin; Seki, Hayato
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1361

Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]
journal, February 2008


Nanoporosity and Exceptional Negative Thermal Expansion in Single-Network Cadmium Cyanide
journal, February 2008

  • Phillips, Anthony E.; Goodwin, Andrew L.; Halder, Gregory J.
  • Angewandte Chemie, Vol. 120, Issue 8
  • DOI: 10.1002/ange.200704421

New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the “Guitar-String” Effect in Cubic ScF 3
journal, June 2016

  • Hu, Lei; Chen, Jun; Sanson, Andrea
  • Journal of the American Chemical Society, Vol. 138, Issue 27
  • DOI: 10.1021/jacs.6b02370

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides
journal, December 2005

  • Takenaka, K.; Takagi, H.
  • Applied Physics Letters, Vol. 87, Issue 26
  • DOI: 10.1063/1.2147726

History-dependent thermal expansion in NbO2F
journal, May 2014

  • Wilkinson, Angus P.; Josefsberg, Ryan E.; Gallington, Leighanne C.
  • Journal of Solid State Chemistry, Vol. 213
  • DOI: 10.1016/j.jssc.2014.02.003

Solid solubility, phase transitions, thermal expansion, and compressibility in Sc1−Al F3
journal, February 2015

  • Morelock, Cody R.; Gallington, Leighanne C.; Wilkinson, Angus P.
  • Journal of Solid State Chemistry, Vol. 222
  • DOI: 10.1016/j.jssc.2014.11.007

The heat capacities of thermomiotic ScF3 and ScF3–YF3 solid solutions
journal, February 2015

  • Romao, Carl P.; Morelock, Cody R.; Johnson, Michel B.
  • Journal of Materials Science, Vol. 50, Issue 9
  • DOI: 10.1007/s10853-015-8899-y

Zero Thermal Expansion in a Flexible, Stable Framework: Tetramethylammonium Copper(I) Zinc(II) Cyanide
journal, January 2010

  • Phillips, Anthony E.; Halder, Gregory J.; Chapman, Karena W.
  • Journal of the American Chemical Society, Vol. 132, Issue 1
  • DOI: 10.1021/ja906895j

Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer
journal, June 2011

  • Azuma, Masaki; Chen, Wei-tin; Seki, Hayato
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1361

Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

Exceptional Negative Thermal Expansion in Isoreticular Metal–Organic Frameworks
journal, June 2007

  • Dubbeldam, David; Walton, Krista S.; Ellis, Donald E.
  • Angewandte Chemie International Edition, Vol. 46, Issue 24
  • DOI: 10.1002/anie.200700218

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous framework
journal, September 2013

  • Zhou, Hao-Long; Lin, Rui-Biao; He, Chun-Ting
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3534

Negative thermal expansion and compressibility of Sc 1– x Y x F 3 (x≤0.25)
journal, December 2013

  • Morelock, Cody R.; Greve, Benjamin K.; Gallington, Leighanne C.
  • Journal of Applied Physics, Vol. 114, Issue 21
  • DOI: 10.1063/1.4836855

Giant Negative Thermal Expansion in NaZn 13 -Type La(Fe, Si, Co) 13 Compounds
journal, July 2013

  • Huang, Rongjin; Liu, Yanying; Fan, Wei
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja405161z

Thermodynamics and Kinetics of the Li/FeF 3 Reaction by Electrochemical Analysis
journal, February 2012

  • Liu, Ping; Vajo, John J.; Wang, John S.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 10
  • DOI: 10.1021/jp211927g

Compositional Dependence of Negative Thermal Expansion in the Prussian Blue Analogues M II Pt IV (CN) 6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd)
journal, May 2006

  • Chapman, Karena W.; Chupas, Peter J.; Kepert, Cameron J.
  • Journal of the American Chemical Society, Vol. 128, Issue 21
  • DOI: 10.1021/ja060916r

Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
journal, September 1992


Structural Relationship between Negative Thermal Expansion and Quartic Anharmonicity of Cubic ScF 3
journal, November 2011


New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the “Guitar-String” Effect in Cubic ScF 3
journal, June 2016

  • Hu, Lei; Chen, Jun; Sanson, Andrea
  • Journal of the American Chemical Society, Vol. 138, Issue 27
  • DOI: 10.1021/jacs.6b02370

Observation of Uniaxial Negative Thermal Expansion in an Organic Crystal
journal, March 2002


Negative thermal expansion materials: technological key for control of thermal expansion
journal, February 2012


Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications
journal, January 2015

  • Chen, Jun; Hu, Lei; Deng, Jinxia
  • Chemical Society Reviews, Vol. 44, Issue 11
  • DOI: 10.1039/C4CS00461B

A combined stretching–tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd( ii )-MOF
journal, January 2014

  • Lama, Prem; Das, Raj Kumar; Smith, Vincent J.
  • Chemical Communications, Vol. 50, Issue 49
  • DOI: 10.1039/C4CC02634A

Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients
journal, October 1992


Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF 3
journal, November 2010

  • Greve, Benjamin K.; Martin, Kenneth L.; Lee, Peter L.
  • Journal of the American Chemical Society, Vol. 132, Issue 44
  • DOI: 10.1021/ja106711v

Negative thermal expansion materials †
journal, January 1999

  • Evans, John S. O.
  • Journal of the Chemical Society, Dalton Transactions, Issue 19
  • DOI: 10.1039/a904297k

Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material
journal, November 2009

  • Das, Dinabandhu; Jacobs, Tia; Barbour, Leonard J.
  • Nature Materials, Vol. 9, Issue 1
  • DOI: 10.1038/nmat2583

Zero Thermal Expansion in a Prussian Blue Analogue
journal, December 2004

  • Margadonna, Serena; Prassides, Kosmas; Fitch, Andrew N.
  • Journal of the American Chemical Society, Vol. 126, Issue 47
  • DOI: 10.1021/ja044959o

Optimized pseudopotentials
journal, January 1990

  • Rappe, Andrew M.; Rabe, Karin M.; Kaxiras, Efthimios
  • Physical Review B, Vol. 41, Issue 2
  • DOI: 10.1103/PhysRevB.41.1227

The widespread occurrence of negative thermal expansion in zeolites
journal, January 2001

  • Lightfoot, Philip; Woodcock, David A.; Maple, Martin J.
  • Journal of Materials Chemistry, Vol. 11, Issue 1
  • DOI: 10.1039/b002950p

First principles methods using CASTEP
journal, January 2005

  • Clark, Stewart J.; Segall, Matthew D.; Pickard, Chris J.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 220, Issue 5/6
  • DOI: 10.1524/zkri.220.5.567.65075

Works referencing / citing this record:

Intrinsic zero thermal expansion in cube cyanurate K 6 Cd 3 (C 3 N 3 O 3 ) 4
journal, January 2019

  • Xia, Mingjun; Liang, Fei; Meng, Xianghe
  • Inorganic Chemistry Frontiers, Vol. 6, Issue 9
  • DOI: 10.1039/c9qi00709a

Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer
journal, January 2019


Guest-dependent negative thermal expansion in a lanthanide-based metal–organic framework
journal, January 2019

  • Gładysiak, Andrzej; Moosavi, Seyed Mohamad; Sarkisov, Lev
  • CrystEngComm, Vol. 21, Issue 35
  • DOI: 10.1039/c9ce00941h

Negative thermal expansion in molecular materials
journal, January 2018

  • Liu, Zhanning; Gao, Qilong; Chen, Jun
  • Chemical Communications, Vol. 54, Issue 41
  • DOI: 10.1039/c8cc01153b

Perovskite-related ReO3-type structures
journal, January 2020


Group 3 metal trihalide complexes with neutral N-donor ligands – exploring their affinity towards fluoride
journal, January 2018

  • Curnock, Emily; Levason, William; Light, Mark E.
  • Dalton Transactions, Vol. 47, Issue 17
  • DOI: 10.1039/c8dt00480c

Colossal Negative Thermal Expansion in Electron‐Doped PbVO 3 Perovskites
journal, July 2018

  • Yamamoto, Hajime; Imai, Takashi; Sakai, Yuki
  • Angewandte Chemie, Vol. 130, Issue 27
  • DOI: 10.1002/ange.201804082

Control of thermal expansion in a low-density framework modification of silicon
journal, April 2018

  • Beekman, Matt; Kaduk, James A.; Wong-Ng, Winnie
  • Applied Physics Letters, Vol. 112, Issue 18
  • DOI: 10.1063/1.5027229

Colossal Negative Thermal Expansion in Electron-Doped PbVO 3 Perovskites
journal, June 2018

  • Yamamoto, Hajime; Imai, Takashi; Sakai, Yuki
  • Angewandte Chemie International Edition, Vol. 57, Issue 27
  • DOI: 10.1002/anie.201804082

On the switching between negative and positive thermal expansion in framework materials
journal, May 2019


Crossover of thermal expansion from positive to negative by removing the excess fluorines in cubic ReO 3 -type TiZrF 7−x
journal, January 2018

  • Yang, Cheng; Zhang, Yugang; Bai, Jianming
  • Journal of Materials Chemistry C, Vol. 6, Issue 19
  • DOI: 10.1039/c7tc04875k

Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer
journal, January 2019


Negative thermal expansion behavior in orthorhombic Sc 2 (MoO 4 ) 3 and Sc 2 (WO 4 ) 3
journal, September 2019

  • Gupta, Mayanak K.; Mittal, Ranjan; Chaplot, Samrath L.
  • Journal of Applied Physics, Vol. 126, Issue 12
  • DOI: 10.1063/1.5115318

Switching from positive to negative axial thermal expansion in two organic crystalline compounds with similar packing
journal, January 2018

  • Negi, Lalita; Shrivastava, Ashutosh; Das, Dinabandhu
  • Chemical Communications, Vol. 54, Issue 76
  • DOI: 10.1039/c8cc05859h