skip to main content


Title: OpenFlow arbitrated programmable network channels for managing quantum metadata

Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-defined network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.
 [1] ;  [2]
  1. U.S. Army Research Lab., Aberdeen Proving Ground, MD (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Defense Modeling and Simulation
Additional Journal Information:
Journal Volume: 14; Journal ID: ISSN 1548-5129
Society for Modeling and Simulation International
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
97 MATHEMATICS AND COMPUTING; quantum networks; quantum computing; software-defined networks; openflow
OSTI Identifier: