DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current

Abstract

Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. But, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. Here, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge2Sb2Te5) and a heater (TiN) electrode. The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2-3 mu A. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. Our approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.

Authors:
 [1];  [2];  [2];  [2];  [3];  [3];  [4];  [5];  [2];  [6]
  1. Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of). Dept. of Materials Science and Engineering; Global Frontier R&D Center for Hybrid Interface Materials (HIM), Busan (Korea, Republic of)
  2. Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of). Dept. of Materials Science and Engineering
  3. Pusan National Univ., Busan (Korea, Republic of). Shool of Materials Science and Engineering
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  5. Gunma Univ. (Japan)
  6. Global Frontier R&D Center for Hybrid Interface Materials (HIM), Busan (Korea, Republic of); Pusan National Univ., Busan (Korea, Republic of). Shool of Materials Science and Engineering
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Research Foundation of Korea (NRF)
OSTI Identifier:
1357004
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 27; Journal Issue: 7; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Park, Woon Ik, Kim, Jong Min, Jeong, Jae Won, Hur, Yoon Hyoung, Choi, Young Joong, Kwon, Se-Hun, Hong, Seungbum, Yin, You, Jung, Yeon Sik, and Kim, Kwang Ho. Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current. United States: N. p., 2015. Web. doi:10.1021/acs.chemmater.5b00542.
Park, Woon Ik, Kim, Jong Min, Jeong, Jae Won, Hur, Yoon Hyoung, Choi, Young Joong, Kwon, Se-Hun, Hong, Seungbum, Yin, You, Jung, Yeon Sik, & Kim, Kwang Ho. Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current. United States. https://doi.org/10.1021/acs.chemmater.5b00542
Park, Woon Ik, Kim, Jong Min, Jeong, Jae Won, Hur, Yoon Hyoung, Choi, Young Joong, Kwon, Se-Hun, Hong, Seungbum, Yin, You, Jung, Yeon Sik, and Kim, Kwang Ho. Tue . "Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current". United States. https://doi.org/10.1021/acs.chemmater.5b00542. https://www.osti.gov/servlets/purl/1357004.
@article{osti_1357004,
title = {Hierarchically Self-Assembled Block Copolymer Blends for Templating Hollow Phase-Change Nanostructures with an Extremely Low Switching Current},
author = {Park, Woon Ik and Kim, Jong Min and Jeong, Jae Won and Hur, Yoon Hyoung and Choi, Young Joong and Kwon, Se-Hun and Hong, Seungbum and Yin, You and Jung, Yeon Sik and Kim, Kwang Ho},
abstractNote = {Phase change memory (PCM) is one of the most promising candidates for next-generation nonvolatile memory devices because of its high speed, excellent reliability, and outstanding scalability. But, the high switching current of PCM devices has been a critical hurdle to realize low-power operation. Although one solution is to reduce the switching volume of the memory, the resolution limit of photolithography hinders further miniaturization of device dimensions. Here, we employed unconventional self-assembly geometries obtained from blends of block copolymers (BCPs) to form ring-shaped hollow PCM nanostructures with an ultrasmall contact area between a phase-change material (Ge2Sb2Te5) and a heater (TiN) electrode. The high-density (approximately 0.1 terabits per square inch) PCM nanoring arrays showed extremely small switching current of 2-3 mu A. Furthermore, the relatively small reset current of the ring-shaped PCM compared to the pillar-shaped devices is attributed to smaller switching volume, which is well supported by electro-thermal simulation results. Our approach may also be extended to other nonvolatile memory device applications such as resistive switching memory and magnetic storage devices, where the control of nanoscale geometry can significantly affect device performances.},
doi = {10.1021/acs.chemmater.5b00542},
journal = {Chemistry of Materials},
number = 7,
volume = 27,
place = {United States},
year = {Tue Mar 17 00:00:00 EDT 2015},
month = {Tue Mar 17 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ultra-high-density phase-change storage and memory
journal, April 2006

  • Hamann, Hendrik F.; O'Boyle, Martin; Martin, Yves C.
  • Nature Materials, Vol. 5, Issue 5
  • DOI: 10.1038/nmat1627

Phase Change Memory
journal, December 2010


Phase-change random access memory: A scalable technology
journal, July 2008

  • Raoux, S.; Burr, G. W.; Breitwisch, M. J.
  • IBM Journal of Research and Development, Vol. 52, Issue 4.5
  • DOI: 10.1147/rd.524.0465

Design Rules for Phase-Change Materials in Data Storage Applications
journal, April 2011

  • Lencer, Dominic; Salinga, Martin; Wuttig, Matthias
  • Advanced Materials, Vol. 23, Issue 18
  • DOI: 10.1002/adma.201004255

Liquid Ge2Sb2Te5 studied by extended x-ray absorption
journal, December 2009

  • Kolobov, A. V.; Fons, P.; Krbal, M.
  • Applied Physics Letters, Vol. 95, Issue 24
  • DOI: 10.1063/1.3272680

Highly Reliable Ring-Type Contact for High-Density Phase Change Memory
journal, April 2006

  • Jeong, Chang-Wook; Ahn, Su-Jin; Hwang, Young-Nam
  • Japanese Journal of Applied Physics, Vol. 45, Issue 4B
  • DOI: 10.1143/JJAP.45.3233

Phase change memories: State-of-the-art, challenges and perspectives
journal, January 2006


Fullerene thermal insulation for phase change memory
journal, January 2008

  • Kim, Cheolkyu; Suh, Dong-Seok; Kim, Kijoon H. P.
  • Applied Physics Letters, Vol. 92, Issue 1
  • DOI: 10.1063/1.2830002

Ga 2 Te 3 Sb 5 -A Candidate for Fast and Ultralong Retention Phase-Change Memory
journal, May 2009

  • Kao, Kin-Fu; Lee, Chain-Ming; Chen, Ming-Jung
  • Advanced Materials, Vol. 21, Issue 17
  • DOI: 10.1002/adma.200800423

Interfacial phase-change memory
journal, July 2011

  • Simpson, R. E.; Fons, P.; Kolobov, A. V.
  • Nature Nanotechnology, Vol. 6, Issue 8
  • DOI: 10.1038/nnano.2011.96

Investigation on nitrogen-doped Ge2Sb2Te5 material for phase-change memory application
journal, January 2013


Highly scalable non-volatile and ultra-low-power phase-change nanowire memory
journal, September 2007

  • Lee, Se-Ho; Jung, Yeonwoong; Agarwal, Ritesh
  • Nature Nanotechnology, Vol. 2, Issue 10
  • DOI: 10.1038/nnano.2007.291

Self-Assembled Incorporation of Modulated Block Copolymer Nanostructures in Phase-Change Memory for Switching Power Reduction
journal, March 2013

  • Park, Woon Ik; You, Byoung Kuk; Mun, Beom Ho
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn4000176

Ring Contact Electrode Process for High Density Phase Change Random Access Memory
journal, April 2007

  • Ryoo, Kyung-Chang; Song, Yoon Jong; Shin, Jae-Min
  • Japanese Journal of Applied Physics, Vol. 46, Issue 4B
  • DOI: 10.1143/JJAP.46.2001

Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates
journal, December 2000


Self-Assembly-Induced Formation of High-Density Silicon Oxide Memristor Nanostructures on Graphene and Metal Electrodes
journal, February 2012

  • Park, Woon Ik; Yoon, Jong Moon; Park, Moonkyu
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl203597d

Nanofabricated Concentric Ring Structures by Templated Self-Assembly of a Diblock Copolymer
journal, September 2008

  • Jung, Yeon Sik; Jung, Wonjoon; Ross, C. A.
  • Nano Letters, Vol. 8, Issue 9
  • DOI: 10.1021/nl802011w

Assembly of aligned linear metallic patterns on silicon
journal, August 2007


Constructing Metal-Based Structures on Nanopatterned Etched Silicon
journal, May 2011

  • Zhang, Xiaojiang; Qiao, Yinghong; Xu, Lina
  • ACS Nano, Vol. 5, Issue 6
  • DOI: 10.1021/nn201109s

A Path to Ultranarrow Patterns Using Self-Assembled Lithography
journal, March 2010

  • Jung, Yeon Sik; Chang, J. B.; Verploegen, Eric
  • Nano Letters, Vol. 10, Issue 3
  • DOI: 10.1021/nl904141r

Nanotransfer Printing with sub-10 nm Resolution Realized using Directed Self-Assembly
journal, June 2012


Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter
journal, May 1997


Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates
journal, July 2003

  • Ouk Kim, Sang; Solak, Harun H.; Stoykovich, Mark P.
  • Nature, Vol. 424, Issue 6947, p. 411-414
  • DOI: 10.1038/nature01775

Nanostructure engineering by templated self-assembly of block copolymers
journal, October 2004

  • Cheng, Joy Y.; Mayes, Anne M.; Ross, Caroline A.
  • Nature Materials, Vol. 3, Issue 11
  • DOI: 10.1038/nmat1211

Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures
journal, June 2005

  • Stoykovich, Mark P.; Müller, Marcus; Kim, Sang Ouk
  • Science, Vol. 308, Issue 5727, p. 1442-1446
  • DOI: 10.1126/science.1111041

Patterning with block copolymer thin films
journal, February 2005


Polymer self assembly in semiconductor microelectronics
journal, September 2007

  • Black, C. T.; Ruiz, R.; Breyta, G.
  • IBM Journal of Research and Development, Vol. 51, Issue 5
  • DOI: 10.1147/rd.515.0605

Directing the self-assembly of block copolymers
journal, October 2007


Graphoepitaxy of Self-Assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates
journal, August 2008


Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly
journal, August 2008


Nanowire Conductive Polymer Gas Sensor Patterned Using Self-Assembled Block Copolymer Lithography
journal, November 2008

  • Jung, Yeon Sik; Jung, WooChul; Tuller, Harry L.
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl802099k

Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns
journal, June 2009


Uniform Graphene Quantum Dots Patterned from Self-Assembled Silica Nanodots
journal, February 2012

  • Lee, Jinsup; Kim, Kyungho; Park, Woon Ik
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl302520m

Templating Three-Dimensional Self-Assembled Structures in Bilayer Block Copolymer Films
journal, June 2012


High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching
journal, November 2014

  • Jeong, Jae Won; Yang, Se Ryeun; Hur, Yoon Hyung
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6387

Host-Guest Self-assembly in Block Copolymer Blends
journal, November 2013

  • Park, Woon Ik; Kim, YongJoo; Jeong, Jae Won
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03190

Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes
journal, March 2011


Works referencing / citing this record:

Polymeric nanoblends compatibilization: a strategic design to enhance the effectiveness of nanocarriers for biomedical applications
journal, March 2019

  • Soares, Daniel Crístian Ferreira; Arribada, Raquel Gregorio; de Barros, Andre Luis Branco
  • International Journal of Polymeric Materials and Polymeric Biomaterials, Vol. 69, Issue 9
  • DOI: 10.1080/00914037.2019.1581779

Polyferrocenylsilanes: synthesis, properties, and applications
journal, January 2016

  • Hailes, Rebekah L. N.; Oliver, Alex M.; Gwyther, Jessica
  • Chemical Society Reviews, Vol. 45, Issue 19
  • DOI: 10.1039/c6cs00155f

Hollow polymer nanocapsules: synthesis, properties, and applications
journal, January 2018

  • Bentz, Kyle C.; Savin, Daniel A.
  • Polymer Chemistry, Vol. 9, Issue 16
  • DOI: 10.1039/c8py00142a

Pattern formation of metal–oxide hybrid nanostructures via the self-assembly of di-block copolymer blends
journal, January 2019

  • Jung, Dae Soo; Bang, Jiwon; Park, Tae Wan
  • Nanoscale, Vol. 11, Issue 40
  • DOI: 10.1039/c9nr04038b