DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Topological structure prediction in binary nanoparticle superlattices

Abstract

Systems of spherical nanoparticles with capping ligands have been shown to self-assemble into beautiful superlattices of fascinating structure and complexity. Here, I show that the spherical geometry of the nanoparticle imposes constraints on the nature of the topological defects associated with the capping ligand and that such topological defects control the structure and stability of the superlattices that can be assembled. Furthermore, all of these considerations form the basis for the orbifold topological model (OTM) described in this paper. Finally, the model quantitatively predicts the structure of super-lattices where capping ligands are hydrocarbon chains in excellent agreement with experimental results, explains the appearance of low packing fraction lattices as equilibrium, why certain similar structures are more stable (bccAB6vs. CaB6, AuCu vs. CsCl, etc.) and many other experimental observations.

Authors:
 [1]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1355757
Report Number(s):
IS-J 8309
Journal ID: ISSN 1744-683X; SMOABF
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Soft Matter
Additional Journal Information:
Journal Volume: 13; Journal Issue: 1; Journal ID: ISSN 1744-683X
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Travesset, A. Topological structure prediction in binary nanoparticle superlattices. United States: N. p., 2017. Web. doi:10.1039/C6SM00713A.
Travesset, A. Topological structure prediction in binary nanoparticle superlattices. United States. https://doi.org/10.1039/C6SM00713A
Travesset, A. Thu . "Topological structure prediction in binary nanoparticle superlattices". United States. https://doi.org/10.1039/C6SM00713A. https://www.osti.gov/servlets/purl/1355757.
@article{osti_1355757,
title = {Topological structure prediction in binary nanoparticle superlattices},
author = {Travesset, A.},
abstractNote = {Systems of spherical nanoparticles with capping ligands have been shown to self-assemble into beautiful superlattices of fascinating structure and complexity. Here, I show that the spherical geometry of the nanoparticle imposes constraints on the nature of the topological defects associated with the capping ligand and that such topological defects control the structure and stability of the superlattices that can be assembled. Furthermore, all of these considerations form the basis for the orbifold topological model (OTM) described in this paper. Finally, the model quantitatively predicts the structure of super-lattices where capping ligands are hydrocarbon chains in excellent agreement with experimental results, explains the appearance of low packing fraction lattices as equilibrium, why certain similar structures are more stable (bccAB6vs. CaB6, AuCu vs. CsCl, etc.) and many other experimental observations.},
doi = {10.1039/C6SM00713A},
journal = {Soft Matter},
number = 1,
volume = 13,
place = {United States},
year = {Thu Apr 27 00:00:00 EDT 2017},
month = {Thu Apr 27 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 56 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Crystal Structures of Molecular Gold Nanocrystal Arrays
journal, May 1999

  • Whetten, Robert L.; Shafigullin, Marat N.; Khoury, Joseph T.
  • Accounts of Chemical Research, Vol. 32, Issue 5
  • DOI: 10.1021/ar970239t

Structural diversity in binary nanoparticle superlattices
journal, January 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Kotov, Nicholas A.
  • Nature, Vol. 439, Issue 7072, p. 55-59
  • DOI: 10.1038/nature04414

Superlattice formation in mixtures of hard-sphere colloids
journal, July 2000


Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid
journal, May 2014


Coarse-grained model for gold nanocrystals with an organic capping layer
journal, December 2007

  • Schapotschnikow, Philipp; Pool, René; Vlugt, Thijs J. H.
  • Molecular Physics, Vol. 105, Issue 23-24
  • DOI: 10.1080/00268970701802432

Entropy-driven formation of a superlattice in a hard-sphere binary mixture
journal, September 1993

  • Eldridge, M. D.; Madden, P. A.; Frenkel, D.
  • Nature, Vol. 365, Issue 6441
  • DOI: 10.1038/365035a0

Phase diagram of power law and Lennard-Jones systems: Crystal phases
journal, October 2014

  • Travesset, Alex
  • The Journal of Chemical Physics, Vol. 141, Issue 16
  • DOI: 10.1063/1.4898371

Monte Carlo Studies of the XY Model on Two-Dimensional Curved Surfaces
journal, December 2011

  • Selinger, Robin L. Blumberg; Konya, Andrew; Travesset, Alex
  • The Journal of Physical Chemistry B, Vol. 115, Issue 48
  • DOI: 10.1021/jp205128g

Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Driving diffusionless transformations in colloidal crystals using DNA handshaking
journal, January 2012

  • Casey, Marie T.; Scarlett, Raynaldo T.; Benjamin Rogers, W.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2206

Many-Body Effects in Nanocrystal Superlattices: Departure from Sphere Packing Explains Stability of Binary Phases
journal, March 2015

  • Boles, Michael A.; Talapin, Dmitri V.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/jacs.5b00839

Topological Defects in Spherical Nematics
journal, July 2008


Understanding interactions between capped nanocrystals: Three-body and chain packing effects
journal, September 2009

  • Schapotschnikow, Philipp; Vlugt, Thijs J. H.
  • The Journal of Chemical Physics, Vol. 131, Issue 12
  • DOI: 10.1063/1.3227043

Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations
journal, April 2012

  • Li, Ting I. N. G.; Sknepnek, Rastko; Macfarlane, Robert J.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300679e

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

Toward a Tetravalent Chemistry of Colloids
journal, October 2002


Large attractive depletion interactions in soft repulsive–sphere binary mixtures
journal, December 2007

  • Cinacchi, Giorgio; Martínez-Ratón, Yuri; Mederos, Luis
  • The Journal of Chemical Physics, Vol. 127, Issue 21
  • DOI: 10.1063/1.2804330

Small is different: energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies
journal, January 2004

  • Landman, Uzi; Luedtke, W. D.
  • Faraday Discussions, Vol. 125
  • DOI: 10.1039/b312640b

Effect of Chain Tilt on the Interaction between Brush-Coated Colloids
journal, May 2005


DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Molecular Exchange in Ordered Diblock Copolymer Micelles
journal, May 2011

  • Choi, Soo-Hyung; Bates, Frank S.; Lodge, Timothy P.
  • Macromolecules, Vol. 44, Issue 9
  • DOI: 10.1021/ma102788v

Materials design by DNA programmed self-assembly
journal, December 2011


Binary Nanoparticle Superlattices in the Semiconductor−Semiconductor System:  CdTe and CdSe
journal, December 2007

  • Chen, Zhuoying; Moore, Jenny; Radtke, Guillaume
  • Journal of the American Chemical Society, Vol. 129, Issue 50
  • DOI: 10.1021/ja076698z

Prediction of binary nanoparticle superlattices from soft potentials
journal, January 2016

  • Horst, Nathan; Travesset, Alex
  • The Journal of Chemical Physics, Vol. 144, Issue 1
  • DOI: 10.1063/1.4939238

Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements
journal, December 1980


Binary nanoparticle superlattices of soft-particle systems
journal, July 2015


Molecular Simulations of Interacting Nanocrystals
journal, September 2008

  • Schapotschnikow, Philipp; Pool, René; Vlugt, Thijs J. H.
  • Nano Letters, Vol. 8, Issue 9
  • DOI: 10.1021/nl8017862

Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices
journal, March 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Murray, Christopher B.
  • Journal of the American Chemical Society, Vol. 128, Issue 11
  • DOI: 10.1021/ja0564261

Theory and simulation of DNA-coated colloids: a guide for rational design
journal, January 2016

  • Angioletti-Uberti, Stefano; Mognetti, Bortolo M.; Frenkel, Daan
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 9
  • DOI: 10.1039/C5CP06981E

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals
journal, June 2015

  • Goodfellow, Brian W.; Yu, Yixuan; Bosoy, Christian A.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 13
  • DOI: 10.1021/acs.jpclett.5b00946

Quantifying “Softness” of Organic Coatings on Gold Nanoparticles Using Correlated Small-Angle X-ray and Neutron Scattering
journal, November 2015


Nematic textures in spherical shells
journal, August 2006


Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices
journal, November 2015

  • Wei, Jingjing; Schaeffer, Nicolas; Pileni, Marie-Paule
  • Journal of the American Chemical Society, Vol. 137, Issue 46
  • DOI: 10.1021/jacs.5b09959

Polymorphism in Self-Assembled AB 6 Binary Nanocrystal Superlattices
journal, March 2011

  • Ye, Xingchen; Chen, Jun; Murray, Christopher B.
  • Journal of the American Chemical Society, Vol. 133, Issue 8
  • DOI: 10.1021/ja108708v

Works referencing / citing this record:

Assembly by solvent evaporation: equilibrium structures and relaxation times
journal, January 2019


Superlattice assembly by interpolymer complexation
journal, January 2019

  • Horst, Nathan; Nayak, Srikanth; Wang, Wenjie
  • Soft Matter, Vol. 15, Issue 47
  • DOI: 10.1039/c9sm01659g

Modeling antigen-antibody nanoparticle bioconjugates and their polymorphs
journal, March 2018

  • Desgranges, Caroline; Delhommelle, Jerome
  • The Journal of Chemical Physics, Vol. 148, Issue 12
  • DOI: 10.1063/1.5018855

Potential of mean force for two nanocrystals: Core geometry and size, hydrocarbon unsaturation, and universality with respect to the force field
journal, July 2018

  • Waltmann, Curt; Horst, Nathan; Travesset, Alex
  • The Journal of Chemical Physics, Vol. 149, Issue 3
  • DOI: 10.1063/1.5039495

Relevance of packing to colloidal self-assembly
journal, January 2018

  • Cersonsky, Rose K.; van Anders, Greg; Dodd, Paul M.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 7
  • DOI: 10.1073/pnas.1720139115

Nanoparticle Superlattices as Quasi-Frank-Kasper Phases
journal, September 2017