DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor

Abstract

Ambient pine forest air was oxidized by OH, O3, or NO3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O3 and NO3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20–30 min, in order to determine how the availability of SOA precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O3 or NO3 oxidation. This is likely because O3 and NO3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = Cmore » bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O3 and NO3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O3 and NO3 oxidation produced SOA with elemental O : C and H : C similar to the least-oxidized OA observed in local ambient air, and neither oxidant led to net mass loss at the highest exposures, in contrast to OH oxidation. An OH exposure in the OFR equivalent to several hours of atmospheric aging also produced SOA with O : C and H : C values similar to ambient OA, while higher aging (days–weeks) led to formation of SOA with progressively higher O : C and lower H : C (and net mass loss at the highest exposures). NO3 oxidation led to the production of particulate organic nitrates (pRONO2), while OH and O3 oxidation (under low NO) did not, as expected. As a result, these measurements of SOA formation provide the first direct comparison of SOA formation potential and chemical evolution from OH, O3, and NO3 oxidation in the real atmosphere and help to clarify the oxidation processes that lead to SOA formation from biogenic hydrocarbons.« less

Authors:
ORCiD logo; ORCiD logo; ; ; ; ; ; ; ; ; ; ORCiD logo; ORCiD logo; ; ; ORCiD logo
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1352991
Alternate Identifier(s):
OSTI ID: 1368377
Grant/Contract Number:  
SC0011105; SC0016559
Resource Type:
Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online) Journal Volume: 17 Journal Issue: 8; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Palm, Brett B., Campuzano-Jost, Pedro, Day, Douglas A., Ortega, Amber M., Fry, Juliane L., Brown, Steven S., Zarzana, Kyle J., Dube, William, Wagner, Nicholas L., Draper, Danielle C., Kaser, Lisa, Jud, Werner, Karl, Thomas, Hansel, Armin, Gutiérrez-Montes, Cándido, and Jimenez, Jose L. Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor. Germany: N. p., 2017. Web. doi:10.5194/acp-17-5331-2017.
Palm, Brett B., Campuzano-Jost, Pedro, Day, Douglas A., Ortega, Amber M., Fry, Juliane L., Brown, Steven S., Zarzana, Kyle J., Dube, William, Wagner, Nicholas L., Draper, Danielle C., Kaser, Lisa, Jud, Werner, Karl, Thomas, Hansel, Armin, Gutiérrez-Montes, Cándido, & Jimenez, Jose L. Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor. Germany. https://doi.org/10.5194/acp-17-5331-2017
Palm, Brett B., Campuzano-Jost, Pedro, Day, Douglas A., Ortega, Amber M., Fry, Juliane L., Brown, Steven S., Zarzana, Kyle J., Dube, William, Wagner, Nicholas L., Draper, Danielle C., Kaser, Lisa, Jud, Werner, Karl, Thomas, Hansel, Armin, Gutiérrez-Montes, Cándido, and Jimenez, Jose L. Tue . "Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor". Germany. https://doi.org/10.5194/acp-17-5331-2017.
@article{osti_1352991,
title = {Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor},
author = {Palm, Brett B. and Campuzano-Jost, Pedro and Day, Douglas A. and Ortega, Amber M. and Fry, Juliane L. and Brown, Steven S. and Zarzana, Kyle J. and Dube, William and Wagner, Nicholas L. and Draper, Danielle C. and Kaser, Lisa and Jud, Werner and Karl, Thomas and Hansel, Armin and Gutiérrez-Montes, Cándido and Jimenez, Jose L.},
abstractNote = {Ambient pine forest air was oxidized by OH, O3, or NO3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O3 and NO3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20–30 min, in order to determine how the availability of SOA precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O3 or NO3 oxidation. This is likely because O3 and NO3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O3 and NO3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O3 and NO3 oxidation produced SOA with elemental O : C and H : C similar to the least-oxidized OA observed in local ambient air, and neither oxidant led to net mass loss at the highest exposures, in contrast to OH oxidation. An OH exposure in the OFR equivalent to several hours of atmospheric aging also produced SOA with O : C and H : C values similar to ambient OA, while higher aging (days–weeks) led to formation of SOA with progressively higher O : C and lower H : C (and net mass loss at the highest exposures). NO3 oxidation led to the production of particulate organic nitrates (pRONO2), while OH and O3 oxidation (under low NO) did not, as expected. As a result, these measurements of SOA formation provide the first direct comparison of SOA formation potential and chemical evolution from OH, O3, and NO3 oxidation in the real atmosphere and help to clarify the oxidation processes that lead to SOA formation from biogenic hydrocarbons.},
doi = {10.5194/acp-17-5331-2017},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 8,
volume = 17,
place = {Germany},
year = {Tue Apr 25 00:00:00 EDT 2017},
month = {Tue Apr 25 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/acp-17-5331-2017

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals
journal, August 2010

  • George, I. J.; Abbatt, J. P. D.
  • Nature Chemistry, Vol. 2, Issue 9
  • DOI: 10.1038/nchem.806

Elemental composition of organic aerosol: The gap between ambient and laboratory measurements
journal, May 2015

  • Chen, Qi; Heald, Colette L.; Jimenez, Jose L.
  • Geophysical Research Letters, Vol. 42, Issue 10
  • DOI: 10.1002/2015GL063693

Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation
journal, July 2015

  • Krechmer, Jordan E.; Coggon, Matthew M.; Massoli, Paola
  • Environmental Science & Technology, Vol. 49, Issue 17
  • DOI: 10.1021/acs.est.5b02031

Aerosol and Product Yields from NO 3 Radical-Initiated Oxidation of Selected Monoterpenes
journal, February 1999

  • Hallquist, Mattias; Wängberg, Ingvar; Ljungström, Evert
  • Environmental Science & Technology, Vol. 33, Issue 4
  • DOI: 10.1021/es980292s

Laboratory Studies on Secondary Organic Aerosol Formation from Crude Oil Vapors
journal, October 2013

  • Li, R.; Palm, B. B.; Borbon, A.
  • Environmental Science & Technology, Vol. 47, Issue 21
  • DOI: 10.1021/es402265y

Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010
journal, January 2015

  • Hayes, P. L.; Carlton, A. G.; Baker, K. R.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 10
  • DOI: 10.5194/acp-15-5773-2015

Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011
journal, January 2016

  • Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 2
  • DOI: 10.5194/acp-16-1187-2016

Missing peroxy radical sources within a summertime ponderosa pine forest
journal, January 2014


Reactive uptake of ozone by liquid organic compounds
journal, March 1998

  • de Gouw, Joost A.; Lovejoy, Edward R.
  • Geophysical Research Letters, Vol. 25, Issue 6
  • DOI: 10.1029/98GL00515

Campholenic aldehyde ozonolysis: a mechanism leading to specific biogenic secondary organic aerosol constituents
journal, January 2014

  • Kahnt, A.; Iinuma, Y.; Mutzel, A.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 2
  • DOI: 10.5194/acp-14-719-2014

Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes
journal, March 1997

  • Atkinson, R.
  • Journal of Physical and Chemical Reference Data, Vol. 26, Issue 2
  • DOI: 10.1063/1.556012

Atmospheric NO 2 :  In Situ Laser-Induced Fluorescence Detection at Parts per Trillion Mixing Ratios
journal, February 2000

  • Thornton, Joel A.; Wooldridge, Paul J.; Cohen, Ronald C.
  • Analytical Chemistry, Vol. 72, Issue 3
  • DOI: 10.1021/ac9908905

Potentially important nighttime heterogeneous chemistry: NO3 with aldehydes and N2O5 with alcohols
journal, January 2011

  • Iannone, Richard; Xiao, Song; Bertram, Allan K.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 21
  • DOI: 10.1039/c1cp20294d

Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition
journal, January 2015

  • Bruns, E. A.; El Haddad, I.; Keller, A.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 6
  • DOI: 10.5194/amt-8-2315-2015

Secondary organic aerosol formation from the β-pinene+NO 3 system: effect of humidity and peroxy radical fate
journal, January 2015


Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations
journal, June 1991

  • Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.
  • Environmental Science & Technology, Vol. 25, Issue 6
  • DOI: 10.1021/es00018a015

Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3
journal, January 2013

  • Ortega, A. M.; Day, D. A.; Cubison, M. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 22
  • DOI: 10.5194/acp-13-11551-2013

A simplified description of the evolution of organic aerosol composition in the atmosphere: VAN KREVELEN DIAGRAM OF ORGANIC AEROSOL
journal, April 2010

  • Heald, C. L.; Kroll, J. H.; Jimenez, J. L.
  • Geophysical Research Letters, Vol. 37, Issue 8
  • DOI: 10.1029/2010GL042737

The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US
journal, January 2015

  • Knote, C.; Hodzic, A.; Jimenez, J. L.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-1-2015

Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol
journal, January 2017

  • Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 3
  • DOI: 10.5194/acp-17-2103-2017

An experimental study of the gas-phase reactions of the NO3 radical with three sesquiterpenes: isolongifolene, alloisolongifolene, and α-neoclovene
journal, January 1999

  • Canosa-Mas, Carlos E.; King, Martin D.; Scarr, Phillip J.
  • Physical Chemistry Chemical Physics, Vol. 1, Issue 12
  • DOI: 10.1039/a902034i

Introducing the concept of Potential Aerosol Mass (PAM)
journal, January 2007

  • Kang, E.; Root, M. J.; Toohey, D. W.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 22
  • DOI: 10.5194/acp-7-5727-2007

The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Gas-phase rate coefficients of the reaction of ozone with four sesquiterpenes at 295 ± 2 K
journal, January 2015

  • Richters, Stefanie; Herrmann, Hartmut; Berndt, Torsten
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 17
  • DOI: 10.1039/C4CP05542J

An environmental chamber investigation of chlorine-enhanced ozone formation in Houston, Texas
journal, January 2003


Kinetics of the gas-phase reactions of NO3 radicals with a series of alcohols, glycol ethers, ethers and chloroalkenes
journal, January 1998

  • Chew, Andrew A.; Atkinson, Roger; Aschmann, Sara M.
  • Journal of the Chemical Society, Faraday Transactions, Vol. 94, Issue 8
  • DOI: 10.1039/a708183i

Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints
journal, June 2011

  • Chen, Qi; Liu, Yingjun; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 45, Issue 11
  • DOI: 10.1021/es104398s

Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer
journal, December 2006

  • DeCarlo, Peter F.; Kimmel, Joel R.; Trimborn, Achim
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac061249n

Selective measurements of isoprene and 2-methyl-3-buten-2-ol based on NO + ionization mass spectrometry
journal, January 2012


Transitions from Functionalization to Fragmentation Reactions of Laboratory Secondary Organic Aerosol (SOA) Generated from the OH Oxidation of Alkane Precursors
journal, May 2012

  • Lambe, Andrew T.; Onasch, Timothy B.; Croasdale, David R.
  • Environmental Science & Technology, Vol. 46, Issue 10
  • DOI: 10.1021/es300274t

Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique: A NOVEL AEROSOL MASS SPECTROMETRIC TECHNIQUE
journal, May 2002

  • Morris, J. W.; Davidovits, P.; Jayne, J. T.
  • Geophysical Research Letters, Vol. 29, Issue 9
  • DOI: 10.1029/2002GL014692

Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol
journal, June 2017

  • Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen
  • Reviews of Geophysics, Vol. 55, Issue 2
  • DOI: 10.1002/2016RG000540

Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected
journal, January 2006

  • Volkamer, Rainer; Jimenez, Jose L.; San Martini, Federico
  • Geophysical Research Letters, Vol. 33, Issue 17
  • DOI: 10.1029/2006GL026899

Formation and chemical aging of secondary organic aerosol during the β-caryophyllene oxidation
journal, January 2015


Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield
journal, January 2015

  • Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 6
  • DOI: 10.5194/acp-15-3063-2015

Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity
journal, January 2015

  • Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 14
  • DOI: 10.5194/acp-15-8301-2015

Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons
journal, April 2006

  • Ng, Nga L.; Kroll, Jesse H.; Keywood, Melita D.
  • Environmental Science & Technology, Vol. 40, Issue 7
  • DOI: 10.1021/es052269u

Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres
journal, April 1999

  • Yu, Jianzhen; Griffin, Robert J.; Cocker, David R.
  • Geophysical Research Letters, Vol. 26, Issue 8
  • DOI: 10.1029/1999GL900169

Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons
journal, October 2014

  • Fry, Juliane L.; Draper, Danielle C.; Barsanti, Kelley C.
  • Environmental Science & Technology, Vol. 48, Issue 20
  • DOI: 10.1021/es502204x

Gas-phase terpene oxidation products: a review
journal, April 1999


Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications
journal, January 2015

  • Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-253-2015

Health Effects of Fine Particulate Air Pollution: Lines that Connect
journal, June 2006


Gas-Phase Reactions of Nopinone, 3-Isopropenyl-6-oxo-heptanal, and 5-Methyl-5-vinyltetrahydrofuran-2-ol with OH, NO 3 , and Ozone
journal, February 1999

  • Calogirou, Aggelos; Jensen, Niels R.; Nielsen, Claus J.
  • Environmental Science & Technology, Vol. 33, Issue 3
  • DOI: 10.1021/es980530j

Secondary organic aerosol formation from the oxidation of a series of sesquiterpenes: α-cedrene, β-caryophyllene, α-humulene and α-farnesene with O3, OH and NO3 radicals
journal, January 2013

  • Jaoui, Mohammed; Kleindienst, Tadeusz E.; Docherty, Kenneth S.
  • Environmental Chemistry, Vol. 10, Issue 3
  • DOI: 10.1071/EN13025

Reactions of NO3 radicals with limonene and α-pinene: Product and SOA formation
journal, January 2006


Modelling of Particle Formation from no3 Oxidation of Selected Monoterpenes
journal, November 2000


Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance
journal, January 2012

  • Orlando, John J.; Tyndall, Geoffrey S.
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35166h

Atmospheric chemistry of the monoterpene reaction products nopinone, camphenilone, and 4-acetyl-1-methylcyclohexene
journal, May 1993

  • Atkinson, Roger; Aschmann, Sara M.
  • Journal of Atmospheric Chemistry, Vol. 16, Issue 4
  • DOI: 10.1007/BF01032629

In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor
journal, January 2016

  • Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 5
  • DOI: 10.5194/acp-16-2943-2016

SOA from limonene: role of NO 3 in its generation and degradation
journal, January 2011

  • Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 8
  • DOI: 10.5194/acp-11-3879-2011

Chemical aging of ambient organic aerosol from heterogeneous reaction with hydroxyl radicals
journal, January 2008

  • George, I. J.; Slowik, J.; Abbatt, J. P. D.
  • Geophysical Research Letters, Vol. 35, Issue 13
  • DOI: 10.1029/2008GL033884

Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor
journal, September 2014

  • Tkacik, Daniel S.; Lambe, Andrew T.; Jathar, Shantanu
  • Environmental Science & Technology, Vol. 48, Issue 19
  • DOI: 10.1021/es502239v

Observations of HNO 3 , ΣAN, ΣPN and NO 2 fluxes: evidence for rapid HO x chemistry within a pine forest canopy
journal, January 2008


Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes
journal, January 2015

  • Zhao, D. F.; Kaminski, M.; Schlag, P.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 2
  • DOI: 10.5194/acp-15-991-2015

Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere
journal, August 2012

  • Zhang, Haofei; Worton, David R.; Lewandowski, Michael
  • Environmental Science & Technology, Vol. 46, Issue 17
  • DOI: 10.1021/es301648z

Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape
journal, January 1981


Organic nitrate and secondary organic aerosol yield from NO 3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model
journal, January 2009

  • Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 4
  • DOI: 10.5194/acp-9-1431-2009

Ozonolysis of α-pinene: parameterization of secondary organic aerosol mass fraction
journal, January 2007

  • Pathak, R. K.; Presto, A. A.; Lane, T. E.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 14
  • DOI: 10.5194/acp-7-3811-2007

Elemental composition and oxidation of chamber organic aerosol
journal, January 2011

  • Chhabra, P. S.; Ng, N. L.; Canagaratna, M. R.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 17
  • DOI: 10.5194/acp-11-8827-2011

The AeroCom evaluation and intercomparison of organic aerosol in global models
journal, January 2014

  • Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 19
  • DOI: 10.5194/acp-14-10845-2014

Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling
journal, January 2016

  • Peng, Zhe; Day, Douglas A.; Ortega, Amber M.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 7
  • DOI: 10.5194/acp-16-4283-2016

Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements
journal, August 2010


Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species
journal, January 2006

  • Atkinson, R.; Baulch, D. L.; Cox, R. A.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 11
  • DOI: 10.5194/acp-6-3625-2006

Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011
journal, January 2013

  • Fry, J. L.; Draper, D. C.; Zarzana, K. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 17
  • DOI: 10.5194/acp-13-8585-2013

Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013
journal, January 2014

  • Ortega, J.; Turnipseed, A.; Guenther, A. B.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 12
  • DOI: 10.5194/acp-14-6345-2014

Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol
journal, April 2014

  • Zhang, X.; Cappa, C. D.; Jathar, S. H.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1404727111

Rate constants for the gas phase reactions of O3 with the natural hydrocarbons isoprene and α- and β-pinene
journal, January 1982


Nighttime radical observations and chemistry
journal, January 2012

  • Brown, Steven S.; Stutz, Jochen
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35181a

Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review
journal, January 2003


Particle mass yield from β -caryophyllene ozonolysis
journal, January 2012

  • Chen, Q.; Li, Y. L.; McKinney, K. A.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 7
  • DOI: 10.5194/acp-12-3165-2012

Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area
journal, January 2016

  • Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 11
  • DOI: 10.5194/acp-16-7411-2016

Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors
journal, January 2012

  • Saukko, E.; Lambe, A. T.; Massoli, P.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 16
  • DOI: 10.5194/acp-12-7517-2012

Enhanced H-atom abstraction from pinonaldehyde, pinonic acid, pinic acid, and related compounds: theoretical study of C–H bond strengths
journal, January 2002

  • Vereecken, Luc; Peeters, Jozef
  • Physical Chemistry Chemical Physics, Vol. 4, Issue 3
  • DOI: 10.1039/b109370c

Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Particulate Organic Nitrates
journal, February 2010

  • Bruns, Emily A.; Perraud, Véronique; Zelenyuk, Alla
  • Environmental Science & Technology, Vol. 44, Issue 3
  • DOI: 10.1021/es9029864

Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)
journal, January 2016

  • Hu, Weiwei; Palm, Brett B.; Day, Douglas A.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 18
  • DOI: 10.5194/acp-16-11563-2016

Comparison of different real time VOC measurement techniques in a ponderosa pine forest
journal, January 2013

  • Kaser, L.; Karl, T.; Schnitzhofer, R.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2893-2013

Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene
journal, January 2008

  • Shilling, J. E.; Chen, Q.; King, S. M.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 7
  • DOI: 10.5194/acp-8-2073-2008

O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry
journal, June 2008

  • Aiken, Allison C.; DeCarlo, Peter F.; Kroll, Jesse H.
  • Environmental Science & Technology, Vol. 42, Issue 12
  • DOI: 10.1021/es703009q

Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with α -pinene ozonolysis
journal, January 2016

  • Nah, Theodora; McVay, Renee C.; Zhang, Xuan
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 14
  • DOI: 10.5194/acp-16-9361-2016

Changes in organic aerosol composition with aging inferred from aerosol mass spectra
journal, January 2011

  • Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 13
  • DOI: 10.5194/acp-11-6465-2011

Oxidative aging and cloud condensation nuclei activation of laboratory combustion soot
journal, January 2015


Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


HO x radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling
journal, January 2015

  • Peng, Z.; Day, D. A.; Stark, H.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 11
  • DOI: 10.5194/amt-8-4863-2015

Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer
journal, January 2007

  • Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.
  • Mass Spectrometry Reviews, Vol. 26, Issue 2
  • DOI: 10.1002/mas.20115

Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: experimental PAM chamber studies
journal, January 2011

  • Kang, E.; Toohey, D. W.; Brune, W. H.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 4
  • DOI: 10.5194/acp-11-1837-2011

Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX
journal, January 2013

  • Brown, S. S.; Dubé, W. P.; Bahreini, R.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 22
  • DOI: 10.5194/acp-13-11317-2013

The gas-phase ozonolysis of β-caryophyllene (C15H24). Part I: an experimental study
journal, January 2009

  • Winterhalter, Richard; Herrmann, Frank; Kanawati, Basem
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 21
  • DOI: 10.1039/b817824k

Rapid deposition of oxidized biogenic compounds to a temperate forest
journal, January 2015

  • Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 5
  • DOI: 10.1073/pnas.1418702112

Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry
journal, March 2010

  • Farmer, D. K.; Matsunaga, A.; Docherty, K. S.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0912340107

Using Elemental Ratios to Predict the Density of Organic Material Composed of Carbon, Hydrogen, and Oxygen
journal, December 2011

  • Kuwata, Mikinori; Zorn, Soeren R.; Martin, Scot T.
  • Environmental Science & Technology, Vol. 46, Issue 2
  • DOI: 10.1021/es202525q

Autoxidation of Organic Compounds in the Atmosphere
journal, September 2013

  • Crounse, John D.; Nielsen, Lasse B.; Jørgensen, Solvejg
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz4019207

The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols
journal, January 2009

  • Smith, J. D.; Kroll, J. H.; Cappa, C. D.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 9
  • DOI: 10.5194/acp-9-3209-2009

Modeling the Radical Chemistry in an Oxidation Flow Reactor: Radical Formation and Recycling, Sensitivities, and the OH Exposure Estimation Equation
journal, November 2014

  • Li, Rui; Palm, Brett B.; Ortega, Amber M.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 19
  • DOI: 10.1021/jp509534k

Hydrolysis of Organonitrate Functional Groups in Aerosol Particles
journal, December 2012


Hydrogen shift reactions in four methyl-buten-ol (MBO) peroxy radicals and their impact on the atmosphere
journal, December 2016


Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes
journal, January 2006

  • Lee, Anita; Goldstein, Allen H.; Kroll, Jesse H.
  • Journal of Geophysical Research, Vol. 111, Issue D17
  • DOI: 10.1029/2006JD007050

Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car
journal, January 2016

  • Karjalainen, Panu; Timonen, Hilkka; Saukko, Erkka
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 13
  • DOI: 10.5194/acp-16-8559-2016

Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies
journal, January 2011

  • Cubison, M. J.; Ortega, A. M.; Hayes, P. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12049-2011

Aerosol Wall Losses in Electrically Charged Chambers
journal, January 1985


Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere
journal, May 2008


Ozonolysis of β-Pinene: Temperature Dependence of Secondary Organic Aerosol Mass Fraction
journal, July 2008

  • Pathak, Ravikant; Donahue, Neil M.; Pandis, Spyros N.
  • Environmental Science & Technology, Vol. 42, Issue 14
  • DOI: 10.1021/es070721z

Diode laser-based cavity ring-down instrument for NO 3 , N 2 O 5 , NO, NO 2 and O 3 from aircraft
journal, January 2011

  • Wagner, N. L.; Dubé, W. P.; Washenfelder, R. A.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 6
  • DOI: 10.5194/amt-4-1227-2011