skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

Abstract

Now, detectors for cosmic microwave background (CMB) experiments are background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. We present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's T-c is discussed. In addition, detectors fabricated with Ti/Au TESmore » films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Our results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.« less

Authors:
 [1];  [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [6];  [6];  [6];  [2];  [4];  [4];  [4];  [9];  [5];  [2];  [2] more »;  [2];  [5];  [10];  [4];  [8];  [2];  [11];  [8];  [5];  [12];  [4];  [13];  [5];  [5];  [6];  [5];  [2];  [14];  [15];  [4];  [5];  [4];  [2];  [4];  [2];  [10];  [11];  [16];  [17];  [2];  [4];  [4];  [2];  [15];  [18];  [19];  [19];  [5];  [8];  [19];  [4];  [2];  [20];  [21];  [4];  [5];  [21];  [4];  [6];  [3];  [16];  [11];  [2];  [5];  [2];  [6] « less
  1. United Kingdom Astronomy Technology Centre, Edinburgh (United Kingdom)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Univ. of Wales, Cardiff (United Kingdom)
  4. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP)
  5. Univ. of California, Berkeley, CA (United States)
  6. Stanford Univ., CA (United States). Kavli Institute for Particle Astrophysics and Cosmology
  7. Univ. of California, San Diego, CA (United States)
  8. Univ. of Colorado, Boulder, CO (United States)
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  10. McGill Univ., Montreal, QC (Canada)
  11. Univ. of Illinois, Urbana-Champaign, IL (United States)
  12. High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)
  13. NIST Quantum Devices Group, Boulder, CO (United States)
  14. Case Western Reserve Univ. (United States)
  15. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  16. Univ. of Toronto, ON (Canada)
  17. Univ. of Colorado, Denver, CO (United States)
  18. Univ. of Melbourne (Australia)
  19. Case Western Reserve Univ., Cleveland, OH (United States)
  20. Harvard Univ., Cambridge, MA (United States). Harvard-Smithsonian Center for Astrophysics
  21. Univ. of Chicago, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); Natural Sciences and Engineering Research Council of Canada (NSERC); Gordon and Betty Moore Foundation
OSTI Identifier:
1352656
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of SPIE - The International Society for Optical Engineering
Additional Journal Information:
Journal Volume: 9914; Journal Issue: Part 1; Journal ID: ISSN 0277-786X
Publisher:
SPIE
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; Bolometers; CMB; Microfabrication; SPT-3G; South Pole Telescope; Superconducting Detectors; Transition Edge Sensors

Citation Formats

Holland, Wayne S., Zmuidzinas, Jonas, Posada, Chrystian M., Ade, Peter A. R., Anderson, Adam J., Avva, Jessica, Ahmed, Zeeshan, Arnold, Kam S., Austermann, Jason, Bender, Amy N., Benson, Bradford A., Bleem, Lindsey, Byrum, Karen, Carlstrom, John E., Carter, Faustin W., Chang, Clarence, Cho, Hsiao-Mei, Cukierman, Ari, Czaplewski, David A., Ding, Junjia, Divan, Ralu N. S., de Haan, Tijmen, Dobbs, Matt, Dutcher, Daniel, Everett, Wenderline, Gannon, Renae N., Guyser, Robert J., Halverson, Nils W., Harrington, Nicholas L., Hattori, Kaori, Henning, Jason W., Hilton, Gene C., Holzapfel, William L., Huang, Nicholas, Irwin, Kent D., Jeong, Oliver, Khaire, Trupti, Korman, Milo, Kubik, Donna L., Kuo, Chao-Lin, Lee, Adrian T., Leitch, Erik M., Lendinez Escudero, Sergi, Meyer, Stephan S., Miller, Christina S., Montgomery, Joshua, Nadolski, Andrew, Natoli, Tyler J., Nguyen, Hogan, Novosad, Valentyn, Padin, Stephen, Pan, Zhaodi, Pearson, John E., Rahlin, Alexandra, Reichardt, Christian L., Ruhl, John E., Saliwanchik, Benjamin, Shirley, Ian, Sayre, James T., Shariff, Jamil A., Shirokoff, Erik D., Stan, Liliana, Stark, Antony A., Sobrin, Joshua, Story, Kyle, Suzuki, Aritoki, Tang, Qing Yang, Thakur, Ritoban B., Thompson, Keith L., Tucker, Carole E., Vanderlinde, Keith, Vieira, Joaquin D., Wang, Gensheng, Whitehorn, Nathan, Yefremenko, Volodymyr, and Yoon, Ki Won. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver. United States: N. p., 2016. Web. doi:10.1117/12.2232912.
Holland, Wayne S., Zmuidzinas, Jonas, Posada, Chrystian M., Ade, Peter A. R., Anderson, Adam J., Avva, Jessica, Ahmed, Zeeshan, Arnold, Kam S., Austermann, Jason, Bender, Amy N., Benson, Bradford A., Bleem, Lindsey, Byrum, Karen, Carlstrom, John E., Carter, Faustin W., Chang, Clarence, Cho, Hsiao-Mei, Cukierman, Ari, Czaplewski, David A., Ding, Junjia, Divan, Ralu N. S., de Haan, Tijmen, Dobbs, Matt, Dutcher, Daniel, Everett, Wenderline, Gannon, Renae N., Guyser, Robert J., Halverson, Nils W., Harrington, Nicholas L., Hattori, Kaori, Henning, Jason W., Hilton, Gene C., Holzapfel, William L., Huang, Nicholas, Irwin, Kent D., Jeong, Oliver, Khaire, Trupti, Korman, Milo, Kubik, Donna L., Kuo, Chao-Lin, Lee, Adrian T., Leitch, Erik M., Lendinez Escudero, Sergi, Meyer, Stephan S., Miller, Christina S., Montgomery, Joshua, Nadolski, Andrew, Natoli, Tyler J., Nguyen, Hogan, Novosad, Valentyn, Padin, Stephen, Pan, Zhaodi, Pearson, John E., Rahlin, Alexandra, Reichardt, Christian L., Ruhl, John E., Saliwanchik, Benjamin, Shirley, Ian, Sayre, James T., Shariff, Jamil A., Shirokoff, Erik D., Stan, Liliana, Stark, Antony A., Sobrin, Joshua, Story, Kyle, Suzuki, Aritoki, Tang, Qing Yang, Thakur, Ritoban B., Thompson, Keith L., Tucker, Carole E., Vanderlinde, Keith, Vieira, Joaquin D., Wang, Gensheng, Whitehorn, Nathan, Yefremenko, Volodymyr, & Yoon, Ki Won. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver. United States. doi:10.1117/12.2232912.
Holland, Wayne S., Zmuidzinas, Jonas, Posada, Chrystian M., Ade, Peter A. R., Anderson, Adam J., Avva, Jessica, Ahmed, Zeeshan, Arnold, Kam S., Austermann, Jason, Bender, Amy N., Benson, Bradford A., Bleem, Lindsey, Byrum, Karen, Carlstrom, John E., Carter, Faustin W., Chang, Clarence, Cho, Hsiao-Mei, Cukierman, Ari, Czaplewski, David A., Ding, Junjia, Divan, Ralu N. S., de Haan, Tijmen, Dobbs, Matt, Dutcher, Daniel, Everett, Wenderline, Gannon, Renae N., Guyser, Robert J., Halverson, Nils W., Harrington, Nicholas L., Hattori, Kaori, Henning, Jason W., Hilton, Gene C., Holzapfel, William L., Huang, Nicholas, Irwin, Kent D., Jeong, Oliver, Khaire, Trupti, Korman, Milo, Kubik, Donna L., Kuo, Chao-Lin, Lee, Adrian T., Leitch, Erik M., Lendinez Escudero, Sergi, Meyer, Stephan S., Miller, Christina S., Montgomery, Joshua, Nadolski, Andrew, Natoli, Tyler J., Nguyen, Hogan, Novosad, Valentyn, Padin, Stephen, Pan, Zhaodi, Pearson, John E., Rahlin, Alexandra, Reichardt, Christian L., Ruhl, John E., Saliwanchik, Benjamin, Shirley, Ian, Sayre, James T., Shariff, Jamil A., Shirokoff, Erik D., Stan, Liliana, Stark, Antony A., Sobrin, Joshua, Story, Kyle, Suzuki, Aritoki, Tang, Qing Yang, Thakur, Ritoban B., Thompson, Keith L., Tucker, Carole E., Vanderlinde, Keith, Vieira, Joaquin D., Wang, Gensheng, Whitehorn, Nathan, Yefremenko, Volodymyr, and Yoon, Ki Won. Tue . "Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver". United States. doi:10.1117/12.2232912. https://www.osti.gov/servlets/purl/1352656.
@article{osti_1352656,
title = {Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver},
author = {Holland, Wayne S. and Zmuidzinas, Jonas and Posada, Chrystian M. and Ade, Peter A. R. and Anderson, Adam J. and Avva, Jessica and Ahmed, Zeeshan and Arnold, Kam S. and Austermann, Jason and Bender, Amy N. and Benson, Bradford A. and Bleem, Lindsey and Byrum, Karen and Carlstrom, John E. and Carter, Faustin W. and Chang, Clarence and Cho, Hsiao-Mei and Cukierman, Ari and Czaplewski, David A. and Ding, Junjia and Divan, Ralu N. S. and de Haan, Tijmen and Dobbs, Matt and Dutcher, Daniel and Everett, Wenderline and Gannon, Renae N. and Guyser, Robert J. and Halverson, Nils W. and Harrington, Nicholas L. and Hattori, Kaori and Henning, Jason W. and Hilton, Gene C. and Holzapfel, William L. and Huang, Nicholas and Irwin, Kent D. and Jeong, Oliver and Khaire, Trupti and Korman, Milo and Kubik, Donna L. and Kuo, Chao-Lin and Lee, Adrian T. and Leitch, Erik M. and Lendinez Escudero, Sergi and Meyer, Stephan S. and Miller, Christina S. and Montgomery, Joshua and Nadolski, Andrew and Natoli, Tyler J. and Nguyen, Hogan and Novosad, Valentyn and Padin, Stephen and Pan, Zhaodi and Pearson, John E. and Rahlin, Alexandra and Reichardt, Christian L. and Ruhl, John E. and Saliwanchik, Benjamin and Shirley, Ian and Sayre, James T. and Shariff, Jamil A. and Shirokoff, Erik D. and Stan, Liliana and Stark, Antony A. and Sobrin, Joshua and Story, Kyle and Suzuki, Aritoki and Tang, Qing Yang and Thakur, Ritoban B. and Thompson, Keith L. and Tucker, Carole E. and Vanderlinde, Keith and Vieira, Joaquin D. and Wang, Gensheng and Whitehorn, Nathan and Yefremenko, Volodymyr and Yoon, Ki Won},
abstractNote = {Now, detectors for cosmic microwave background (CMB) experiments are background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. We present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's T-c is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Our results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.},
doi = {10.1117/12.2232912},
journal = {Proceedings of SPIE - The International Society for Optical Engineering},
number = Part 1,
volume = 9914,
place = {United States},
year = {2016},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Atacama Cosmology Telescope: cosmological parameters from three seasons of data
journal, October 2013

  • Sievers, Jonathan L.; Hlozek, Renée A.; Nolta, Michael R.
  • Journal of Cosmology and Astroparticle Physics, Vol. 2013, Issue 10
  • DOI: 10.1088/1475-7516/2013/10/060

Structure in the COBE differential microwave radiometer first-year maps
journal, September 1992

  • Smoot, G. F.; Bennett, C. L.; Kogut, A.
  • The Astrophysical Journal, Vol. 396
  • DOI: 10.1086/186504

Multi-chroic Dual-Polarization Bolometric Focal Plane for Studies of the Cosmic Microwave Background
journal, March 2012


An application of electrothermal feedback for high resolution cryogenic particle detection
journal, April 1995


Multi-Chroic Dual-Polarization Bolometric Detectors for Studies of the Cosmic Microwave Background
journal, January 2014


Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements
journal, July 2012

  • Dobbs, M. A.; Lueker, M.; Aird, K. A.
  • Review of Scientific Instruments, Vol. 83, Issue 7
  • DOI: 10.1063/1.4737629

Cosmic Black-Body Radiation.
journal, July 1965

  • Dicke, R. H.; Peebles, P. J. E.; Roll, P. G.
  • The Astrophysical Journal, Vol. 142
  • DOI: 10.1086/148306

A Measurement of Excess Antenna Temperature at 4080 Mc/s.
journal, July 1965

  • Penzias, A. A.; Wilson, R. W.
  • The Astrophysical Journal, Vol. 142
  • DOI: 10.1086/148307

NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS
journal, September 2013

  • Hinshaw, G.; Larson, D.; Komatsu, E.
  • The Astrophysical Journal Supplement Series, Vol. 208, Issue 2
  • DOI: 10.1088/0067-0049/208/2/19

A superconducting bolometer with strong electrothermal feedback
journal, September 1996

  • Lee, Adrian T.; Richards, Paul L.; Nam, Sae Woo
  • Applied Physics Letters, Vol. 69, Issue 12
  • DOI: 10.1063/1.117491

Fabrication of large dual-polarized multichroic TES bolometer arrays for CMB measurements with the SPT-3G camera
journal, August 2015


The case for the relativistic hot Big Bang cosmology
journal, August 1991

  • Peebles, P. J. E.; Schramm, D. N.; Turner, E. L.
  • Nature, Vol. 352, Issue 6338
  • DOI: 10.1038/352769a0

A Measurement of the Cosmic Microwave Background Damping tail from the 2500-Square-Degree Spt-Sz Survey
journal, November 2013


Detection of B -Mode Polarization at Degree Angular Scales by BICEP2
journal, June 2014


Design and Fabrication of 90 GHz TES Polarimeter Detectors for the South Pole Telescope
journal, June 2013

  • Yefremenko, V.; Ade, P.; Aird, K.
  • IEEE Transactions on Applied Superconductivity, Vol. 23, Issue 3
  • DOI: 10.1109/TASC.2012.2235892

Dual-Polarized Sinuous Antennas on Extended Hemispherical Silicon Lenses
journal, September 2012

  • Edwards, Jennifer M.; O'Brient, Roger; Lee, Adrian T.
  • IEEE Transactions on Antennas and Propagation, Vol. 60, Issue 9
  • DOI: 10.1109/TAP.2012.2207048