skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

Abstract

The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices, for example, batteries. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 M based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 M) have received additional attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally different from those of the traditional SEI and thus enable unusual functions that cannot bemore » realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanism are discussed. As a result, new insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.« less

Authors:
 [1];  [2];  [2];  [1];  [2]
  1. Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA
  2. Chemistry & Biochemistry Department, University of Arkansas, Fayetteville AR 72701 USA
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1349307
Alternate Identifier(s):
OSTI ID: 1349308; OSTI ID: 1378046
Report Number(s):
PNNL-SA-123526
Journal ID: ISSN 2198-3844
Grant/Contract Number:  
AC02-05CH11231; 18769; AC05-76RL01830
Resource Type:
Published Article
Journal Name:
Advanced Science
Additional Journal Information:
Journal Name: Advanced Science Journal Volume: 4 Journal Issue: 8; Journal ID: ISSN 2198-3844
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE; batteries; concentrated electrolytes; interfacial stability; solvation structures; solid electrolyte interphase (SEI)

Citation Formats

Zheng, Jianming, Lochala, Joshua A., Kwok, Alexander, Deng, Zhiqun Daniel, and Xiao, Jie. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Germany: N. p., 2017. Web. doi:10.1002/advs.201700032.
Zheng, Jianming, Lochala, Joshua A., Kwok, Alexander, Deng, Zhiqun Daniel, & Xiao, Jie. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Germany. doi:10.1002/advs.201700032.
Zheng, Jianming, Lochala, Joshua A., Kwok, Alexander, Deng, Zhiqun Daniel, and Xiao, Jie. Fri . "Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications". Germany. doi:10.1002/advs.201700032.
@article{osti_1349307,
title = {Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications},
author = {Zheng, Jianming and Lochala, Joshua A. and Kwok, Alexander and Deng, Zhiqun Daniel and Xiao, Jie},
abstractNote = {The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices, for example, batteries. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 M based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 M) have received additional attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally different from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanism are discussed. As a result, new insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.},
doi = {10.1002/advs.201700032},
journal = {Advanced Science},
number = 8,
volume = 4,
place = {Germany},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/advs.201700032

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO 3 -Contained Electrolyte
journal, January 2012

  • Zhang, Sheng S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.002207jes

A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells
journal, November 2016

  • Ma, Lin; Glazier, S. L.; Petibon, R.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0191701jes

Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Investigation of the O2 Electrochemistry in a Polymer Electrolyte Solid-State Cell
journal, March 2011

  • Hassoun, Jusef; Croce, Fausto; Armand, Michel
  • Angewandte Chemie International Edition, Vol. 50, Issue 13, p. 2999-3002
  • DOI: 10.1002/anie.201006264

Enabling room temperature sodium metal batteries
journal, December 2016


The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Li-ion batteries
journal, February 2015


High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Interface identification of the solid electrolyte interphase on graphite
journal, January 2017


Hierarchically Porous Graphene as a Lithium–Air Battery Electrode
journal, November 2011

  • Xiao, Jie; Mei, Donghai; Li, Xiaolin
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl203332e

Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes
journal, April 2011


A Highly Reversible Room-Temperature Sodium Metal Anode
journal, November 2015


New insights into the limiting parameters of the Li/S rechargeable cell
journal, February 2012


High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability
journal, June 2016

  • Krause, Andreas; Dörfler, Susanne; Piwko, Markus
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep27982

A new electrolyte with good compatibility to a lithium anode for non-aqueous Li–O 2 batteries
journal, January 2016

  • Shi, Yanqiong; Miao, Rongrong; Li, Lei
  • RSC Advances, Vol. 6, Issue 53
  • DOI: 10.1039/C6RA08318H

Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes
journal, July 2015

  • Yamada, Yuki; Chiang, Ching Hua; Sodeyama, Keitaro
  • ChemElectroChem, Vol. 2, Issue 11
  • DOI: 10.1002/celc.201500235

Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries
journal, January 2014

  • Cuisinier, M.; Cabelguen, P. -E.; Adams, B. D.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00372A

Correlating Li + Solvation Sheath Structure with Interphasial Chemistry on Graphite
journal, December 2012

  • von Wald Cresce, Arthur; Borodin, Oleg; Xu, Kang
  • The Journal of Physical Chemistry C, Vol. 116, Issue 50
  • DOI: 10.1021/jp303610t

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Safe Li-ion polymer batteries for HEV applications
journal, July 2004


Formation of Interfacial Layer and Long-Term Cyclability of Li–O 2 Batteries
journal, August 2014

  • Nasybulin, Eduard N.; Xu, Wu; Mehdi, B. Layla
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 16
  • DOI: 10.1021/am503390q

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte
journal, April 2006


Suppression of dendritic lithium formation by using concentrated electrolyte solutions
journal, April 2008


Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations
journal, April 2009


Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes
journal, February 2017


Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces
journal, March 2016

  • Leung, Kevin; Soto, Fernando; Hankins, Kie
  • The Journal of Physical Chemistry C, Vol. 120, Issue 12
  • DOI: 10.1021/acs.jpcc.5b11719

Enabling LiTFSI-based Electrolytes for Safer Lithium-Ion Batteries by Using Linear Fluorinated Carbonates as (Co)Solvent
journal, August 2014


Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries
journal, December 2014

  • Wang, Qiang; Zheng, Jianming; Walter, Eric
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0851503jes

“Water-in-Salt” electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications
journal, January 2016

  • Suo, Liumin; Han, Fudong; Fan, Xiulin
  • Journal of Materials Chemistry A, Vol. 4, Issue 17
  • DOI: 10.1039/C6TA00451B

Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries
journal, February 2013

  • Zheng, Guangyuan; Zhang, Qianfan; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1265-1270
  • DOI: 10.1021/nl304795g

Development of novel lithium borate additives for designed surface modification of high voltage LiNi 0.5 Mn 1.5 O 4 cathodes
journal, January 2016

  • Xu, Mengqing; Zhou, Liu; Dong, Yingnan
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C5EE03360H

Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes
journal, July 2016


Polysulfide dissolution control: the common ion effect
journal, January 2013

  • Shin, Eon Sung; Kim, Keon; Oh, Si Hyoung
  • Chem. Commun., Vol. 49, Issue 20
  • DOI: 10.1039/C2CC36986A

Erratum: Li–O2 and Li–S batteries with high energy storage
journal, December 2011

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3237

Dilution of Highly Concentrated LiBF 4 /Propylene Carbonate Electrolyte Solution with Fluoroalkyl Ethers for 5-V LiNi 0.5 Mn 1.5 O 4 Positive Electrodes
journal, January 2017

  • Doi, Takayuki; Shimizu, Yusuke; Hashinokuchi, Michihiro
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0611701jes

Fast Charge/Discharge of Li Metal Batteries Using an Ionic Liquid Electrolyte
journal, January 2013

  • Yoon, H.; Howlett, P. C.; Best, A. S.
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.022310jes

Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithium-Sulfur Batteries
journal, March 2016

  • Cao, Ruiguo; Chen, Junzheng; Han, Kee Sung
  • Advanced Functional Materials, Vol. 26, Issue 18
  • DOI: 10.1002/adfm.201505074

Enhanced Cycling Stability of Rechargeable Li-O 2 Batteries Using High-Concentration Electrolytes
journal, December 2015


Recent Advances in Non-Aqueous Electrolyte for Rechargeable Li-O 2 Batteries
journal, June 2016

  • Li, Yang; Wang, Xiaogang; Dong, Shanmu
  • Advanced Energy Materials, Vol. 6, Issue 18
  • DOI: 10.1002/aenm.201600751

Investigation of Electrolyte Concentration Effects on the Performance of Lithium–Oxygen Batteries
journal, March 2016

  • Markus, Isaac M.; Jones, Gavin; García, Jeannette M.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 11
  • DOI: 10.1021/acs.jpcc.6b01474

A Graphite-Polysulfide Full Cell with DME-Based Electrolyte
journal, January 2016

  • Bhargav, Amruth; Wu, Min; Fu, Yongzhu
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0151608jes

Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms
journal, January 2014

  • McOwen, Dennis W.; Seo, Daniel M.; Borodin, Oleg
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42351D

A safe and superior propylene carbonate-based electrolyte with high-concentration Li salt
journal, May 2014

  • Ding, Yuanlei; Yun, Jiaojiao; Liu, Hongmei
  • Pure and Applied Chemistry, Vol. 86, Issue 5
  • DOI: 10.1515/pac-2013-1120

Effects of Propylene Carbonate Content in CsPF 6 -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries
journal, February 2016

  • Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 8
  • DOI: 10.1021/acsami.5b12517

Interface modifications by anion receptors for high energy lithium ion batteries
journal, March 2014


Enhanced Cycling Performance of Li-O 2 Batteries by the Optimized Electrolyte Concentration of LiTFSA in Glymes
journal, December 2012


Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium–ion battery electrode
journal, November 2011

  • Manjunatha, H.; Venkatesha, T. V.; Suresh, G. S.
  • Journal of Solid State Electrochemistry, Vol. 16, Issue 5
  • DOI: 10.1007/s10008-011-1593-3

Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by “Water-in-Bisalt” Electrolyte
journal, April 2016

  • Suo, Liumin; Borodin, Oleg; Sun, Wei
  • Angewandte Chemie International Edition, Vol. 55, Issue 25
  • DOI: 10.1002/anie.201602397

Cathode Composites for Li–S Batteries via the Use of Oxygenated Porous Architectures
journal, October 2011

  • Demir-Cakan, Rezan; Morcrette, Mathieu; Nouar, Farid
  • Journal of the American Chemical Society, Vol. 133, Issue 40
  • DOI: 10.1021/ja2062659

A General Discussion of Li Ion Battery Safety
journal, January 2012

  • Doughty, D. H.; Roth, E. P.
  • Interface magazine, Vol. 21, Issue 2
  • DOI: 10.1149/2.F03122if

Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid
journal, June 2012

  • Liu, Jun; Zhang, Ji-Guang; Yang, Zhenguo
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200690

Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte
journal, June 2013


An Advanced Lithium-Sulfur Battery
journal, May 2012

  • Kim, Junghoon; Lee, Dong-Ju; Jung, Hun-Gi
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200689

Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries
journal, January 2013

  • Zheng, Jianming; Gu, Meng; Chen, Honghao
  • Journal of Materials Chemistry A, Vol. 1, Issue 29
  • DOI: 10.1039/c3ta11553d

A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries
journal, February 2016

  • Miao, Rongrong; Yang, Jun; Xu, Zhixin
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21771

Protein Crystallization Induced by a Localized Voltage
journal, August 2007

  • Hammadi, Zoubida; Astier, Jean-Pierre; Morin, Roger
  • Crystal Growth & Design, Vol. 7, Issue 8
  • DOI: 10.1021/cg070108r

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

A High-Performance Polymer Tin Sulfur Lithium Ion Battery
journal, February 2010

  • Hassoun, Jusef; Scrosati, Bruno
  • Angewandte Chemie International Edition, Vol. 49, Issue 13, p. 2371-2374
  • DOI: 10.1002/anie.200907324

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Superconcentrated electrolytes for a high-voltage lithium-ion battery
journal, June 2016

  • Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12032

High performance Li-ion sulfur batteries enabled by intercalation chemistry
journal, January 2015

  • Lv, Dongping; Yan, Pengfei; Shao, Yuyan
  • Chemical Communications, Vol. 51, Issue 70
  • DOI: 10.1039/C5CC05171A

Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes
journal, February 2009

  • Ruffo, Riccardo; Wessells, Colin; Huggins, Robert A.
  • Electrochemistry Communications, Vol. 11, Issue 2, p. 247-249
  • DOI: 10.1016/j.elecom.2008.11.015

A lithium–oxygen battery based on lithium superoxide
journal, January 2016

  • Lu, Jun; Jung Lee, Yun; Luo, Xiangyi
  • Nature, Vol. 529, Issue 7586, p. 377-382
  • DOI: 10.1038/nature16484

Carbon-Based Anodes for Lithium Sulfur Full Cells with High Cycle Stability
journal, August 2013

  • Brückner, Jan; Thieme, Sören; Böttger-Hiller, Falko
  • Advanced Functional Materials, Vol. 24, Issue 9
  • DOI: 10.1002/adfm.201302169

Sulfur/polyacrylonitrile/carbon multi-composites as cathode materials for lithium/sulfur battery in the concentrated electrolyte
journal, January 2014

  • Zhang, Y. Z.; Liu, S.; Li, G. C.
  • J. Mater. Chem. A, Vol. 2, Issue 13
  • DOI: 10.1039/C3TA14914E

Advances of aqueous rechargeable lithium-ion battery: A review
journal, January 2015


Anode-Free Rechargeable Lithium Metal Batteries
journal, August 2016

  • Qian, Jiangfeng; Adams, Brian D.; Zheng, Jianming
  • Advanced Functional Materials, Vol. 26, Issue 39
  • DOI: 10.1002/adfm.201602353

Understanding the Lithium Sulfur Battery System at Relevant Scales
journal, August 2015


Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations
journal, January 2014

  • Liu, Yang; Suo, Liumin; Lin, Huan
  • Journal of Materials Chemistry A, Vol. 2, Issue 24
  • DOI: 10.1039/c4ta00834k

Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries
journal, October 1997


Characteristics of an aqueous rechargeable lithium battery (ARLB)
journal, April 2007


Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High-Concentration Electrolyte Layer
journal, February 2016

  • Zheng, Jianming; Yan, Pengfei; Mei, Donghai
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502151

Direct Observation of Inhomogeneous Solid Electrolyte Interphase on MnO Anode with Atomic Force Microscopy and Spectroscopy
journal, January 2012

  • Zhang, Jie; Wang, Rui; Yang, Xiaocheng
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl300570d

Sulfone-Based Electrolytes for Nonaqueous Li–O 2 Batteries
journal, August 2014

  • Bardé, Fanny; Chen, Yuhui; Johnson, Lee
  • The Journal of Physical Chemistry C, Vol. 118, Issue 33
  • DOI: 10.1021/jp5048198

Importance of ‘unimportant’ experimental parameters in Li–S battery development
journal, March 2014


Whether EC and PC Differ in Interphasial Chemistry on Graphitic Anode and How
journal, January 2009

  • Xu, Kang
  • Journal of The Electrochemical Society, Vol. 156, Issue 9
  • DOI: 10.1149/1.3166182

Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
journal, March 2014

  • Yamada, Yuki; Furukawa, Keizo; Sodeyama, Keitaro
  • Journal of the American Chemical Society, Vol. 136, Issue 13, p. 5039-5046
  • DOI: 10.1021/ja412807w

Spinel LiNi 0.5 Mn 1.5 O 4 Cathode for High-Energy Aqueous Lithium-Ion Batteries
journal, December 2016


Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte
journal, November 2011


Role of the Lithium Salt in the Performance of Lithium-Oxygen Batteries: A Comparative Study
journal, January 2014

  • Elia, Giuseppe Antonio; Park, Jin-Bum; Sun, Yang-Kook
  • ChemElectroChem, Vol. 1, Issue 1
  • DOI: 10.1002/celc.201300160

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Recent Progress in Aqueous Lithium-Ion Batteries
journal, June 2012

  • Wang, Yonggang; Yi, Jin; Xia, Yongyao
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200065

Li + -solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells
journal, August 2012

  • Xu, Kang; von Wald Cresce, Arthur
  • Journal of Materials Research, Vol. 27, Issue 18
  • DOI: 10.1557/jmr.2012.104

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Aluminum corrosion in electrolyte of Li-ion battery
journal, July 2002


Nanostructured high-energy cathode materials for advanced lithium batteries
journal, October 2012

  • Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3435

On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries
journal, February 2015


In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes
journal, December 2014

  • Kim, Hyea; Wu, Feixiang; Lee, Jung Tae
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401792

Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts
journal, January 2016

  • Kerner, Manfred; Plylahan, Nareerat; Scheers, Johan
  • RSC Advances, Vol. 6, Issue 28
  • DOI: 10.1039/C5RA25048J

Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility
journal, December 2014


General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes
journal, March 2014

  • Yamada, Yuki; Usui, Kenji; Chiang, Ching Hua
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 14, p. 10892-10899
  • DOI: 10.1021/am5001163

Lithium-Sulfur Batteries: Progress and Prospects
journal, February 2015

  • Manthiram, Arumugam; Chung, Sheng-Heng; Zu, Chenxi
  • Advanced Materials, Vol. 27, Issue 12
  • DOI: 10.1002/adma.201405115

Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries
journal, November 2011

  • Elazari, Ran; Salitra, Gregory; Garsuch, Arnd
  • Advanced Materials, Vol. 23, Issue 47, p. 5641-5644
  • DOI: 10.1002/adma.201103274

LiBF 4 -Based Concentrated Electrolyte Solutions for Suppression of Electrolyte Decomposition and Rapid Lithium-Ion Transfer at LiNi 0.5 Mn 1.5 O 4 /Electrolyte Interface
journal, January 2016

  • Doi, Takayuki; Shimizu, Yusuke; Hashinokuchi, Michihiro
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.0331610jes

How to Obtain Reproducible Results for Lithium Sulfur Batteries?
journal, January 2013

  • Zheng, Jianming; Lv, Dongping; Gu, Meng
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.106311jes

Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid
journal, January 2016

  • Lahiri, Abhishek; Borisenko, Natalia; Borodin, Andriy
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 7
  • DOI: 10.1039/C5CP06184A

A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode
journal, February 2014

  • Agostini, Marco; Hassoun, Jusef; Liu, Jun
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 14
  • DOI: 10.1021/am4057166

Lithium salts for advanced lithium batteries: Li–metal, Li–O 2 , and Li–S
journal, January 2015

  • Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE01215E

The importance of nonlinear fluid response in joint density-functional theory studies of battery systems
journal, October 2013

  • Gunceler, Deniz; Letchworth-Weaver, Kendra; Sundararaman, Ravishankar
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 7
  • DOI: 10.1088/0965-0393/21/7/074005

Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries
journal, October 2011

  • Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.
  • Nano Letters, Vol. 11, Issue 10, p. 4462-4467
  • DOI: 10.1021/nl2027684

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy
journal, April 2010

  • Yang, Yuan; McDowell, Matthew T.; Jackson, Ariel
  • Nano Letters, Vol. 10, Issue 4, p. 1486-1491
  • DOI: 10.1021/nl100504q

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries
journal, August 2016


Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF 6 in Propylene Carbonate
journal, November 2013

  • Nie, Mengyun; Abraham, Daniel P.; Seo, Daniel M.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 48
  • DOI: 10.1021/jp409765w

An Aqueous Rechargeable Lithium Battery with Good Cycling Performance
journal, January 2007

  • Wang, Gaojun; Fu, Lijun; Zhao, Nahong
  • Angewandte Chemie International Edition, Vol. 46, Issue 1-2
  • DOI: 10.1002/anie.200603699

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

High-Performance Organic Lithium Batteries with an Ether-Based Electrolyte and 9,10-Anthraquinone (AQ)/CMK-3 Cathode
journal, April 2015


Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions?
journal, January 2015

  • Kerner, M.; Plylahan, N.; Scheers, J.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 29
  • DOI: 10.1039/C5CP01891A

Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Stabilizing lithium metal using ionic liquids for long-lived batteries
journal, June 2016

  • Basile, A.; Bhatt, A. I.; O’Mullane, A. P.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11794

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Electrolyte-Directed Reactions of the Oxygen Electrode in Lithium-Air Batteries
journal, December 2014

  • Abraham, K. M.
  • Journal of The Electrochemical Society, Vol. 162, Issue 2
  • DOI: 10.1149/2.0041502jes

Dual-Carbon Battery Using High Concentration LiPF 6 in Dimethyl Carbonate (DMC) Electrolyte
journal, January 2016

  • Miyoshi, Seiji; Nagano, Hiroki; Fukuda, Taro
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0381607jes

Electrochemical Intercalation of Lithium Ion within Graphite from Propylene Carbonate Solutions
journal, January 2003

  • Jeong, Soon-Ki; Inaba, Minoru; Iriyama, Yasutoshi
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 1
  • DOI: 10.1149/1.1526781

Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes
journal, June 2013

  • Yao, Hongbin; Zheng, Guangyuan; Li, Weiyang
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401729r

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

    Works referencing / citing this record:

    Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries
    journal, July 2018


    Recent Progress in Liquid Electrolyte-Based Li–S Batteries: Shuttle Problem and Solutions
    journal, November 2018


    Recent Progress in Liquid Electrolyte-Based Li–S Batteries: Shuttle Problem and Solutions
    journal, November 2018


    Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries
    journal, July 2018


    Sustainable Battery Materials from Biomass
    journal, April 2020